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Foreword

I
Neural networks are of great interest for solving problems in computation that have
previously been considered difficult. Since the late 1970's, interest in neural computation
has grown with the advent of new general-purpose network topologies and learning
algorithms. During this process, government agencies, laboratories and contractors have
played key roles in the development of theories and analyses that will be used world-
wide for a long time to come. The reason for this contribution has generally been the
government's need to develop advanced computer applications. While embedded
weapon system applications have certainly been a celebrated area of the field, the
government's needs cover a wide range of fields, including logistics, management, and
medicine.

This volume contains the proceedings of the Government Neural Networks Application
Workshop (GNN92) held 24-26 August 1992 at the Hope Hotel, Wright-Patterson AFB,
OH. The Tri-Service Neural Network Working Group organizes this meeting annually to
highlight achievements in applying neural networks to government problems. By
emphasizing applications over theory, this meeting serves unique role in the neural
network research community for enhancing team interaction within government,
academe and industry. The meeting has also proved useful for providing feedback to
theoretical researchers on the relevance and usefulness of their results.

This year, the conference noted particular advances in the following areas:

"* Manufacturing/Logistics
"• Adaptive control
"• Robotics
"* Automatic target recognition
"• Radar/signal processing systems

Other papers discussed means of improving neural network performance and system
integration. It is our hope that this meeting will enhance communication and serve as a
springboard for future collaboration among researchers who are keenly interested in
applications.

Capt. Steve Suddarth
GNN92 Chair
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continental breakfast, and refreshments. 3
0830-0945 Tutorial 1: Biological Foundation and Historical Perspective of Neural Computation

0945-1000 Break 3
0945-1145 Tutorial 2: Supervised Learning Techniques 3
1145-1300 Break for Lunch (not provided)

1300-1445 Tutorial 3: Unsupervised Learning
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Undeiwer Signals
D. J. Adams, S. Clary - Loral Defense Systems, Akron;
Y.-H. Pao, T.L. Hemminger, P. Yip - Case Western Reserve University 3
Performance Analysis of the ART-2 Network in a SAR Target Recognition System
S.M. Verbout, L.M. Novak - MIT Lincoln Laboratory I
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A. Penz, P. Thrift, A. Katz - Texas Instruments I

0940-0955 Break
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C.-LJ. Hu - Southern Illinois University
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Neural Network Application for Process Modelling in the Navy Weldexcell Off-LineEngineering/Planning Workstation
X. Xu, J.E. Jones - Colorado School of Mines

Neural Network Analysis of Nondestructive Evaluation Patterns
W.E. Bond - McDonnell Douglas Research Laboratories;
D.C. St. Clair - University of Missouri-Rolla;
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An Application of Neural Network Techniques to Statistical Process Control Chart
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Cell Management Using Neural Network Approaches
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J. Garret - Carnegie-Melon University;
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NEURAL NETWORK APPLICATION FOR PROCESS MODELLING IN THE NAVY
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American Welding Institute

10628 Dutchtown Road

Knoxville, TN 37932
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AWl Professor, Center for Artificial Intelligence

Colorado School of Mines
Golden, CO 80401

ABSTRACT

Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate
the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological
neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with

a specific input pattern, can associate specific output patterns. It is essentially a highly complex, non-linear, mathematical
relationship or transform. These constructs have two significant properties that have proven useful to the authors in process
modelling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning
algorithm that has resulted in the successful application of ANS's to development of models of highly complex processes. The
Navy's WELDEXCELL off-line planning workstation for automated and robotic welding utilizes such a process model in setting
the process control parameters. This paper describes, briefly, the WELDEXCELL System, and discusses the WELDBEAD neural
network process model that is being integrated into that workstation software.

Keywords: Artificial Neural System, Neural Network, WELDEXCELL, Modelling, Welding, Learning, Training, Delta-Activity,
Application

1.0 INTRODUCTION: ARTIFICIAL NEURAL SYSTEMS

It is assumed that the reader has a basic working knowledge of Artificial Neural Systems (ANS). These systems which
are loosely based on biological neural networks offer a computer technology that is a useful tool in process modelling. The ANS
consists of a series of nodes (neurons) and weighted connections (axons). As with a biological neural network, the assignment
of the values of the weights and the size and configuration of the network are the key to a successful net. Unfortunately, we have
only begun to understand the inner workings of these constructs. Consequently, relatively crude tools are currently employed to5develop working networks.

Typically, the approach to model development is to first develop a thorough understanding of the underlying basic
scientific or engineering principles of the process. Then, a model is developed that is based on mathematical relationships inherent
in the process. The principal drawback with this approach is the time and effort required to develop an understanding of these
basic scientific or engineering relationships. Depending on the complexity of the problem, it can take many years and an extensive
resemrch program to develop the relationships. Often, instead, a number of simplifying assumptions are made and an approximate

I
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model is developed. That approach, while being an expedient method for developing an approximate model that could be useful. I
provides only a theoretical approximation that may not be valid for the actual problem application.

The artificial neural system, when a network can be found to solve the problem, provides an accurate empirical model 3
of the process. Neural networks are empirical bases systems that, when presented with a specific input pattern, can associate
specific output patterns. It is, essentially, a highly complex, non-linear, mathematical relationship or transform. However;, it is
not necessary for the der•.loper of such a system to understand the basic underlying principles of a process in order to develop 3
a highly accurate ANS based model of the process. Thus, in this way it is quite different from other mathematical modelling
approaches.

1.1 THE DELTA-ACTIVITYT" NETWORK U
A new method was developed by the authors for training neural networks that has been shown to overcome all of the

known problems with the gradient descent type methods for neural network development, while maintaining the inherent stability 3
and known network development capabilities of those methods. This network was developed through the use of a thermodynamic
model of the network operation which included both the delta energy and the activity or kinetics of the network. The technique,
known as the Delta-Activity Network (D-A Net), has been used on several applications ranging from manufacturing process 3
modelling, to high speed signal processing for electronic warfare applications, to underwater acoustic signal classification. U

The D-A Net has achieved learning rates as high as 1000 times that of the back propagation method while also preventing
the network from falling into learning instabilities'. In addition, the system configures itself dynamically during the learning 3
process and so it can produce a near optimum network size for operation, often much smaller than the network needed to "learn"
the problem. By the combination of dynamic self-configuration and learning instability avoidance, an operating network is
virtually guaranteed for all process modelling problems. Utilizing a third algorithm, called the Representative Training Algorithm, 3
the network is able to guide the experimental design process and to substantially reduce the number of required experiments when
compared to other empirical modelling methods such as Analysis of Variance (ANOVA) and Taguchi techniques.

The development of this network has lead to the application of artificial neural system technology to numerous real 3
problems in process modelling and signal data processing. One of these applications has been a highly complex welding process
model called WELDBEAD that has been integrated into the Navy's WELDEXCELL workstation software. 3
1.2 THE WELDEXCELL SYSTEM: OVERVIEW

The joining of metals into fabricated components and structures is a difficult task. The most common method of joining 3
metals is welding, but the welding process is complex and requires several important steps to be performed in a carefully U
integrated manner. The weld joint is first designed and engineered properly, then that design must be correctly communicated
to the fabrication facility. The appropriate welding consumables, including filler metal and protective flux or inert gas, are chosen. 3
Then the welding procedure is specified, including preheating schedules; welding parameters such as voltage, current and travel
speed; and, postweld heat treating. Finally, the weld must be performed under highly skilled human guidance and control. A
minor error in any of these steps, if undetected, can create an unsuitable welded component, which in later use may result in a
catmatophic failure and perhaps loss of life. 3

An extremely complex and interrelated system of codes, specifications, tests, and inspections ensures that the vast majority
of welds will never fail in service. A weld, which is a small bit of solidified metal, is expected to have the same (or perhaps 3
better) properties as the base metal that it joins. The base metal may have undergone hours of careful and expensive heat treating U
and processing, yet the weld must be as corrosion resistant, as strong, as ductile, and as fracture resistant as the base metal. But
the weld does not have the advantage of all of that processing. 1

Fortmately, a large number of engineers, designers, and welders work within the system of codes and specifications to
ensure the high quality of welded joints, but this system is very expensive and requires the careful attention of many human u
1Research conducted on this technique has confirmed the existence of at least three types of learning instabilities (local minimum
being one of them) and the algorithm can avoid all three instabilities.
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experts. As the availability of engineering talent in the United States continues to decrease over the next decade, Computer Aided
Engineering (CAE) will take on added importance. Consequently, welding engineering and planning is an ideal application for

artificial intelligence technology including expert systems and neural networks. However, no single expert system could be

expected to perform the myriad of tasks required to make a welded joint. For example, there are over 100 welding processes
ranging from simple flame heating to exotic laser welding; there are several hundred welding filler metals -- from plane carbon
steel to elaborate chemical mixtures of alloying ingredients; and there are over 1000 different grades of steel classified by the

American Society for Testing and Materials (ASTM) that may have to be joined. The possible combinations of welding process,

filler metal, and steel base metal would number into the millions.

The solution to this problem is a system being developed for the United States Navy called WELDEXCELL. The beta

test prototype of WELDEXCELL was delivered to Puget Sound Naval Ship Yard for testing during the summer of 1991. The

expert systems needed for welding include materials selection, joint design, welding process and procedure selection. There is

a standard CAD system interface to draw the design and communicate that design to the shop floor as well as a CAD interface
to the robot path planner. The system also includes intelligent processing to control a complex automated welding system or robot
with an array of sensors to guide it and to provide feedback for process control. The system actually being delivered to the Navy

will be configured with at least two sensors, but the system is capable of operating in a multiple sensor environment.

I' The American Welding Institute (AWI), together with its partners, the Colorado School of Mines and MTS Systems, Inc.,
is developing this intelligent weld process planner and intelligent control system for flexible welded fabrication known as the

I WELDing EXpert manufacturing CELL (WELDEXCELL). This project has entailed development of a series of linked expert

systems and neural networks acting as a computer aided engineering and planning assistant and software to download welding
plans and procedures to a welding system and automated manipulator or robot for automatic execution. An intelligent welding
control system is being completed which will interface to a robot system, a series of sensors, and to the welding equipment

2.0 WELD PROCESS MODEL NEURAL NETWORK

I 2.1 THE WELDING PROCESS

Welding is a complex process that includes the welding arc plasma, base materials that are melting and solidifying, in
some cases a wire that melts with droplets forming, and the associated equipment. None of these components have ever been

completely successfully modeled using conventional empirical or theoretical approaches.

* The arc plasma is a super heated gas consisting primarily of ions and electrons in highly excited states. Even measuring
the behavior of the plasma is difficult since the plasma is both a radiating and an absorbing semi-transparent heat source.

Temperature models and measurements have shown that welding arc plasma temperatures range up to 20,000* Kelvin.
A temperature distribution in the plasma or even at the surface of the base metals and the wire is, at best, an un-verified3 approximation.

* Both the melting and solidification of the base metals is a heat flow problem, known as the Stefan Problem, that has no
known theoretical solution. Work in this area has shown reasonably good results with finite element modelling.
However, the best of these codes requires several tens of hours of supercomputer time at a cost that is prohibitive for

virtually all real welding applications.

3 * The melting of the filler wire is a somewhat less complex problem, except that when the filler wire is one of the

electrodes in the welding process, the behavior is both heat flow as well as electrical characteristics and behaviors at very
high cutrent densities. For most welding, where the wire is the electrode, no models exist that provide accurate melting5 and droplet formation information.

* The entire process is significantly affected by the electrical characteristics of the welding power supply and associated
equipment. This equipment is generally well characterized as to its static behavior, but no methods have been discovered5 to model the dynamic activity of these systems.

Today, the methodology applied to developing a plan or "weld schedule" for a joining operation is manual. Several test welds

*3



I

are completed and the results, including photographic representations of the weld bead, are recorded in welding procedure I
Qualification Records (PQR). An experienced welding engineer places several of these PQR's on his desk, and makes "educated

guesses" as to the effects of the various control parameters. U
2.2 THE WELD NEURAL NETWORK MODEL: WELDREAD

Neural networks have been developed to model the Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding 3
(GMAW) processes and to provide several outputs regarding the resulting weldment. The model operates on standard PC type

computers and can provide solutions at a speed of approximately 1/100 sec. Operating in the inverse mode, the model requires

1-2 seconds to determine a solution. The outputs include performance of the welding process such as arc stability and spatter, 3
bead characteristics such as penetration, leg widths, bead undercut, appearance, and ease of slag removal. These networks use

welding voltage, current, wire feed rate, and travel speed as inputs. The models are used to predict bead characteristics, given

values for the inputs. In addition, the networks can be used for an inverse search to find near optimum voltage, current and travel a
speed values, given desired bead characteristics and weld performance. The system allows the user to vary importance factors 3
on each of the desired welding results parameters.

These model networks are the heart of an intelligent control planning system in the WELDEXCELL software. The 3
objective of the associated intelligent control system is not to control the primary independent welding parameters (e.g. voltage, U

current, travel speed, etc.) but to control the final weld quality. That is, control of weld quality parameters such as bead

appearance, penetration, amount of spatter, etc. is the goal of an intelligent control system. Sensor data is not particularly useful

unless it can be both analyzed and used to control the weld quality parameters. These model networks provide that capability.

One of the neural network models of the weld has inputs of voltage, current, and travel speed and outputs of resulting

weld bead height, top and bottom width, and amount of penetration. Figures 1 and 2 show the user interface to the GTAW 3
network. On the screen are several mouse sensitive slide bars that can be set by the user or observed by the user. The top row

of slide bars represent the outputs of the forward network. The second row of slide bars are mouse sensitive and represent

voltage, current, wire feed rate, and travel speed. In addition, the model allows for changes in the gap (opening between the base 3
metals) and the base metal thickness. Finally, many welds are "tacked" with small bits of weld to hold the pieces in place before

and during the actual weld. The model includes the expected changes to the weld when it is made over one of these "tacks".

Figures 1 and 2 show examples of the GTAW butt weld neural network with macrographs of the resulting test weld experiments.

3.0 CONCLUSIONS

This program has shown that it is possible to develop models of highly complex and non-linear processes using the 3
technology of neural networks. The model can provide all of the information necessary to produce a plan for an automated U

process operation. In addition, the neural network model is able to be operated in the inverse mode which provides a capability

for incorporation of this technology into intelligent control systems.
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I Figure 1. Neural network solution for the butt weld. Selected parameters of: voltage = 8.8 volts, current = 150.0 amperes,
travel speed = 5.0 inches per minute, and wire fed rate = 56.5 inches per minute. In addition, the weld is being made in
material of thickness = 0.125 inches and with a gap of 0.035 inches. The resultant shape parameters and bead graphic are

shown in the interface.
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i Figure 2. Neural network solution for the butt weld. Selected parameters of: voltage = 8.9 volts, current = 95.0 ampemr
travel speed - 6.0 inches per minute, and wire feed rate = 64.0 inches per minute. In addition, the weld is being made in
material of thickness = 0.125 inches and with a gap of 0.065 inches. The resultant shape parameters and bead graphic are

i shown in the interface.
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Using Neural Networks to Analyze Nondestructive Evaluation Patterns1

W. E. Bond and D. C. St. Clair 2
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Abstract

Nondestructive evaluation (NDE) techniques represent a class of nonintnzsive processes used to detect anomalies in materials
without requiring the destruction or disassembly of the object being tesWd. Aircraft structures ae an important area for the
application of NDE, since both metallic and composite structures must be monitored for cracks and abnormalities. Various
NDE techniques ae used to verify the integrity of aircraft structural parts prior to assembly, during assembly, and during
mantenance opw ns.

Curmun NDE prctces ae labor intensive and rely heavily on die judgment of human expes. The goal of our NDE research
program is to partially automate NDE, to enhance existing techniques for detecting anomalies, and to reduce testing costs. To
achieve this goal, neural network algorithms were used to build and maintain systems that cum classify NDE results.
Preprocessing techniques were used to identify significant "features" in the waveforms. These featms were then "learned" by
the neural networks and a system was built which could characterize new test results. The objective is to use the features
learned to identify or classify new information.

Background

Current Mc.Donell Douglas Crporation (MDC) efforts have focused on automating A-scan ultrasonic techniques. A-scan
wu chosen after preliminar research prdicted a high likelihood of success. Two other papers have discussed some of the
previous efforts in this 4.

A-scan ultrasomc inspection produces a waveform showing reflected or through-twnmined ultrasonic sound amplitude as a
function of time (depth) for a particular location on the test specimen. By examining the sound energy that is ransmiued or
reflected, it is possible to make determinations about the internal Mcture of the material5 6. The ultrasonic waveform

I Work msported by de McUonnell Douglas Independent Research and Development prigram.
Export Authority 22 CFR 125, 4(b) (13).

2 D. C. St. Clair is a Professor of Computer Science at the University of Missouri-Roila Engineering Education Center in
St. Louis a well as a Visiting Principal Scientist at McDonnell Douglas Research Laboratories.

3 Amirfahi, MM, Morris, S., O'Rorke, P., Bond, WE., and St. Clair, D.C., Pattern Recognition for Non-Destructive
Evaluation, Proceedings of the 1991 IEEE Aerospace Applications Conference, February 3-8, 1991.

4 Bond, WE., St. Clair, D.C., Amirfathi, M.M., Metz, CJ., and Aylward, S., Neural Network Analysis of
Nondestructive Evaluation Patterns, Proceedings of the 1992 ACM/SIGAPP Symposium on Applied
Computing, pp. 643-650.

5 Gallagher, J.P., Gies'er, F. J., Berens, A. P., and Engle, R. M., USAF Damage Tolerant Design Handbook:
Guidelines for the Analysis and Design of Damage Tolerant Aircraft Structures, Wright-Patterson Air
Force Base, Air Force Report No. AFWAL-TR-82-3073, 1984.

6 McMaster, R.C., Ultrasonic Test Principles, Nondestructive Testing Handbook, VoL HI, Section 43, 1959.
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produced at a location containing an anomaly will differ (sometimes significantly, sometimes subtly) from an "expected" I
waveform.

For example, if the test probe was placed at defect-free location "A" in Figure I the resulting waveform would look like 3
Figure 2. Figure 3 shows the wavefcrm that would be obtained if the test probe were placed above a defect, such as at
location "B." Figure 3 iustates a fairly large, obvious defect in a test sample which has been constructed to verify the
opemation of the test equipment Not all defect indications are this pronounced, especially when the pan geometry is
complicated or the defect location is close to either the front or back surface.

A • I

Figure 1. Example test situation 3
From Surface Back Surface

150
50oo- I1 0 0 -i .......... ... ........................ -- ------------- ............................... ....................... .. ...... .......
5 0 .................................. ................. ..... .. ,........................
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___ .. ... ........................ I

----100- -- --- ----- - ----------
-100 .... ................. •..................................... ............................... .......................... ........................... i
-150 i

0 100 200 rune 300 400 500 3
Figure 2. Typical A-scan representation of no-defect
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Figure 3. Typical A-scan representation of a signiflcant defect U
The "features" or "patterns" seen in a waveform are indicative of the conditions found in the test specimen. Since these
feature should be fairly consistent for a specific geometry/material and am directly related to specific conditions, it would
seem that a system could be consticted to recognize these features. Further, NDE test procedures precisely define the

I



conditions under which a test should be performed. These procedures define the type of equipment, type of probe, equipment
settings, and location of the probe. In addition, a calibration sample is often provided to align and verify operation of the test
equipment before actual readings are made. This control is intended to minimize the effects of varying environmental
conditions. This environmental control should contribute positively to the success of using neural network techniques in
NDE.

To characterize the waveforms, several different types of preprocessing were investigated. From this investigation, it was
clear that selecting appropriate preprtoessing techniques for the data was critical to the success of the neural network
algorithms. To date, time and frequency-domain preprocessing has been investigated. A time-domain (TID) technique that
highlighted waveform features and minimized noise was developed. The Fast Fourier Transform (FFI) was also used to
characterize waveforms. Both these techniques have produced excellent results, which are reported below. The drawback of
these techniques is that training data must be available for each specific part/materia/geometry. What is required is a set of
parameters, independent of specific parts and geometries, which can be used to characterize test patterns. The development of
an appropriate set of parameters is currently being studied.

Neural Network Algorithms

After a review of several types of learning techniques7 , two neural network algorithms were chosen to develop the NDE
classification systems. The first technique used was a Backpropagation algorithm8 and the second was an algorithm,
developed at MDC, called SMART2 9 . The SMART2 algorithm is a supervised version of the Adaptive Resonance Theory
algorithm, ART2, described by Carpenter and Grossberg10 . SMART2 trains several times faster than Backpropagation and
produces accuracy very similar to on.

Results

To evaluate these preprocessing techniques and neural network algorithms, a set of experiments was designed which evaluated
test results from three different pans. Multiple readings were taken using hand-held test equipment on the first two parts.
Data was collected on the third part by test equipment which automatically positions the probe and records data.

The first group of data was obtained from a solid laminate standard-composite panel at the part locations shown in Figure 4.
Teflon inserts were placed at different locations and at different depths during the fabrication of the panel to simulate defects in
a composite material. Teflon inserts located along the edges of the sample were removed after the sample cured. This
represented delaminations at those locations. The panel is shown schematically in Figure 4. The part was tested at each of
the numbered test points as indicated by the arrows shown in the cross section view. Positions 1,5,6. 10, 11, and 15 are
delaminations while positions 2, 3.4, 7, 8. 9. 12. 13, and 14 are inserts of different sizes which represent inclusions. A
series of readings were also taken at other locations to obtain readings from "good" portions of the panel. These samples are
denoted by position 16.

The data obtained from the 16 different locations was preprocessed. Then, the data was grouped into 4 and 7 classes. Four
classes were formed by grouping test points that correspond to a particular depth in the composite panel Class 1 corresponds
to locations 1, 2,3,4,and 5. Class 2 corresponds to locations 6,7, 8,9, and 10. Class 3 corresponds to locations 11, 12,
13, 14, and 15. The fourth class corresponds to location 16. Seven classes were formed by grouping together test points

7 SL Clair, D.C., Bond, W.E., Rigler, A.K., and Aylward, S., An Evaluation of Learning Performance in Backpropagauon
Neural Networks and Decision-Tree Classrfer Systems, Proceedings of the 1992 ACM/SIGAPP Symposium
on Applied Computing, Vol. UI, pp. 643-650.

8 Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning Interior Representation by Error Propagation, Parallel
Distributed Processing, VoL 1, Ch. 8, D.E. Rumelhart and J.L. McCielland eds., MIT Press Cambridge, Mass.
1986.

9 Mez, CJ., St. Clair, D.C., and Bond, WE., SeMi-supervised Adaptive Resonance Theory: SMART2, Proceedings
of the 1992 IJCNN International Joint Conference on Neural Networks, Vol. I, pp. 851-856.

10 Carpenter, G.A., and Grossberg, S., ART 2: self-orgadzadton of stable category recognition codes for analog input
patterns, Applied Optics, Dec. 1, 1987, No. 23, pp. 4919-4930.
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tha correspond to a particular type and depth of defecLt Class I - locations 2, 3, 4; Class 2 - locations 1, 5; Class 3- I
locations 7, 8, 9; Class 4 - locations 6, 10; Class 5 - locations 12, 13, 14; Class 6 - locations 11, 15 and Class 7
corresponds to location 16. To produce training and testing data for the algorithms, each dataset was randomly split into two
datasets, with 70% of the data being used for training and 30% for testing.

Cross section view Cross section view

Voids \ 2I

Inserts k )Defect

I

0 0 0Def 9ct, Hole QQ 161I

Pian view Plan view O T D3

Composite sample Aluminum sampleI

Figure 4. Schematic of the parts

The percent accuracies shown in Table I indicate each netwok's ability to associate test instances with their correct 3
classification. The results obtained were excellent with both algorithms. Inclusions and delaminations clearly produce
distinct waveforms which can be discerned by the systems. The seven classes provide a much better distinction among
defects than do the four class.

SMART2 Test Accuracy BP Test

Composute P l 'TD prevrocessin FFT preprocessing TD prevrocessina FFT prerocessing 3
4 99.0 99.8
7 98.3 100.0 99.1 100.0
Calibration Fixture
1 100.0 99.0 100.0 99.0
2 100.0 100.0 1

Table I. Results
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To evaluate die performance of these techniques on an aluminum sample, a set of test readings was obtained from a
calibration fixture that corresponds to an aluminum aircraft part (see Figure 4). Two holes are located in the calibration
fixture. The "defects! in the fixture were introduced by machining small slots. Readings were taken at two different
locations on the fixture (denoted 1, 2). At each location, four different classes of data were obtained corresponding to the
defect (D), the top of the hole (T), the side of the hole (S), and a portion of the sample clear of both the hole and the defect
(G). Access to inspect the actual aircraft part is limited to a single side. In addition, it is difficult to determine exactly where
the holes me located without careful measurement.

The training and test data was obtained from the same calibration fixture but the readings were taken at a different time.
Training and test data was preprocessed. Excellent results were obtained, as shown in Table I. The two neural network
techniques provide essentially the same results.

The third part which was evaluated is an actual aircraft part. This is a complx part which is fabricated by bonding two metal
skins to a closure. The space between the skins is filled with a metal honeycomb. This part is difficult to inspect because of
the multiple materials, the bond, and changing geometry. The task was to determine areas where the bond between the metal
parts was not fully developed so that repairs could be effected. The part used for testing had been carefully inspected by hand,
revealing several areas where the bond was not fully developed.

Data was collected from the part using automated test equipment. A "slice" of data was selected which contained one of the
undeveloped bond areas plus multiple examples of a good bond; this data was used to train die system. Data from the entire
part was analyzed using the resulting system. The results were good. Each undeveloped bond area that had been identified by
hand inspection was also identified by the system. The system also identified several other areas as having an undeveloped
bond. These results are still being studied. The system significantly reduced the amount of data requiring human
interpretation. The data reduction was from 30 to 110 times depending on the type of preprocessing used. The results
indicate that these techniques were successful cven for this complicated par

Summary

This project has demonstrated that, for these samples, an automated system can be constructed to classify NDE test results.
An automated system could significantly decrease testing time and provide consistent test results. Work continues on
improving the preprocessing and neural network techniques.
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Abstract. CONTROL CHARTS

The Spec.al Projects Office of the Center for Supportability A run chart is a plot of a process measurement (e.g. bore
and Technology Insertion (CSTI) has developed a hybrid diameter or time to process an insurance claim) on the
neural-network/expert-system software tool (SPC Version vertical axis (y-axis) against time on the horizontal axis (x-
1.1) which automates the process of constructing and axis). A control chart is simply a run chart with
interpreting control charts. SPC Version 1.1 is a highly statistically determined upper (Upper Control Limit - UCL)
successful example of the practical application of neural and lower (Lower Control Limit - LCL) lines drawn on
network and expert system techniques. The goal of this either side of the process average. These limits are
paper is to highlight the implementation and application of calculated by running a process untouched, taking samples
a software system which uses neural network techniques to of the process measurement, and applying the appropriate
solve real people's problems. SPC Version 1.1 is FREE to statistical formulas (references [3-9]). An example of a
all government agencies. control chart is given below in FIGURE 1.

INTRODUCTION

The Air Force Materiel Command (AFMC) has provided .. . ......

TQM and Quality Control training to its employees for .. . .

several years now. In particular, Statistical Process Control I.
has been emphasized in this effort. While many data Fiure 1 Sample Control Chart
collection and process improvement efforts have been
undertaken within AFMC, the SPC Quality Control tools The random fluctuation of points within the limits results
have been under-utilized due to the complexity of manual from variation built into the process. Such random
application and interpretation. In response, CSTI has variation is natural, results from common causes within the
developed a software tool which automates the graphical system (e.g. design, choice of machine, preventative
and statistical techniques used in Statistical Quality Control. maintenance, etc.), and can only be affected by changing
The most current version of the software, SPC Version 1.1, the system itself. However, points which fall outside of the
automates eight types of control charts and seven types of control limits or which form munnatural" patterns indicate
grphical tools: Run Chart, Moving Range Chart, XBar-R that some of the variation within the process may be due to
Chart, XBar-S Chart, PN Chart, P Chart, C Chart, U assignable causes. Assignable causes of variation (e.g.
Chart, Bar Graph, Pareto Diagram, Pie Chart, Histogram, measurement errors, unplanned events, freak occurrences,
Frequency Polygon, Ogive (CDF), and Scatter Diagram. etc.) can be identified and result from occurrences that are

not part of the process.
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The purpose of drawing the control chart is to detect any have been directly distributed to working level personnel in
unusual causes of variation in the process, signalled by the federal government. I
abnormal points or patterns on the graph. The CSTI
developed software tool automatically identifies nine types SOFTWARE DESIGN
of patterns which suggest the presence of assignable causes
of variation in a process. An example of one of these The basic approach to developing SPC was to integrate
patterns is given in FIGURE 2. Each of the nine patterns machine learning, expert systems, hypertext, and
is associated with generic advice about what may be conventional programming techniques. The machine I
happening at that point in the process. learning portion of SPC was developed using the Abductory

Induction Mechanism (AIM) by AbTECH Inc. The expert
system portion of SPC was prototyped using an embedded
application of the forward chaining expert system tool U

-_ CLIPS along with a generic end-user interface also
developed by CSTI. Due to the size of CLIPS and the
limitations of MS DOS, the knowledge bases used for this

\.-" ,'*- application were encoded directed into C + + code. The
hypertext portion of SPC was developed using a hypertext

Figure 2 An Increasing Trend authoring and display tool called HYPERSHOW developed I
Example of a Pattern Which Suggests the Presence by the Special Projects Office of CSTI. Turbo C+ + was

of Assignable Causes of Variation used as the conventional language into which the machine
learning, expert system, and hypertext applications were

SOFTWARE FUNCTIONALITY embedded.

(1) SPC determines which type of control chart is The task for the machine learning portion of SPC is to
appropriate by asking a series of questions about the nature classify every sub-sequence of the control chart according I
of the user's process data. to the presence or absence of five specific chart patterns :

increasing trends, decreasing trends, shifts up, shifts down,
(2) SPC graphically displays the chart(s) selected in (1). and cycles. The remaining four chart patterns are identified 3

by conventional methods.
(3) SPC identifies 9 pattern types in the chart(s) which
suggest the presence of assignable causes of variation : The expert system is initially utilized to help the user select
increasing trends, decreasing trends, shifts up, shifts down, the appropriate type of control chart. This determination is
cycles, runs, stratification, freak patterns, and freak points. based upon the type of data being collected, the number of

data points, and the constancy of the sample sizes.
(4) SPC graphically displays and highlights each chart
pattern identified in (3). Another function of the expert system is to interpret the

classification results of the trained AIM Network. A
(5) SPC displays text in a hypertext fashion which provides control chart with 40 data points will generate over 600
generic advice on the meaning of each chart pattern classification results; with nine types of patterns this I
identified in (3). amounts to over 5500 individual pieces of classification

information. This interpretation function represents an ideal
SPC 1.1 CUSTOMERS expert system application. What requires a few hundred

lines of difficult-to-comprehend C code can be implemented
SPC is a generic tool whose use is not limited to a using an expert system with only three simple rules! This
particular area of application, Air Force command, or classification information is then boiled down to about one
federal agency. SPC Version 1.1 is currently being used by to ten patterns which are reported to the final expert system
academia, industry, and the federal government. Although application.
SPC is only in its second release, it has developed a wide-
ranging customer base which is growing at an exponential The final role of the expert system is to provide advice via
rate. SPC is comparable or superior to commercial the hypertext facility based upon the types of charts and the
packages, more user-friendly, less expensive (free), and chart patterns present. The advice currently provided by
CSTI offers its customers the ability to directly influence SPC is of a generic nature. For example, I
future enhancements to the software. Over 2500 copies

I
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"A shift up in the R chart indicates that the process (1) The number of increasing steps in an
is becoming less consistent. This may be due to increasing trend may be significantly larger than
some sudden change in the process." (N-I)/2.

However, the knowledge base is designed to allow for quick (2) The number of discordances in a decreasingSmodifications to provide process specific advice. For trend is usually larger than the expected number of

example, discordances in a random sequence which equals
N*(N-I)/4.

"A shift up in the R chart has historically been
associated (90%) with a loose bearing in the O) The autocorrelation coefficient sequence of a
preprocessing machine." cycle is usually cyclic.

Conventional software is used to graphically display the (4) The average of the first half of a shift down is
control charts, utilize the AIM Networks, provide an end- always greater than the average of the second half.
user interface, and integrate the entire application.

Notice that most of these heuristics are in the form of rules
Role Of Machine Learning in Control Chart with confidence factors. This would seem to suggest the
Interpretation possibility of using a production system for the

classification procedure. However, it is almost always the
The task of chart interpretation can be summarized as case that the pattern-type (the attribute for which we wish
follows. A control chart is simply a sequence or array of to determine a value) is on the left-hand side of the rule.
floating point numbers. The art of chart interpretation is to
determine whether or not sub-sequences similar to several This is very similar to some medical diagnosis problems
standard patterns are present within the chart. These whose domain knowledge is in the form "Disorder A
patterns include trends, shifts, and cycles, usually causes symptoms 1, 3, & 4 and may cause symptom

2. " In cases such as these, the best knowledge-based
The function of the machine learning tool is to generate approach is to use some form of a Hypothesize-and-Test
code (trained AIM Networks) which can effectively classify (HT) model. Although the liT approach appears to model
a specific sub-sequence of a control chart (array) according the domain very well, we did not pursue this option since
to the presence or absence of several standard patterns. we do not have access to a HT development tool which can
With this classification function generated by machine be easily embedded into other applications.
learning techniques, all sub-sequences of the control chart
are exhaustively (conventionally) classified by five AIM Attempting to implement such applications using a rule-
Networks. The AIM Network classification results are based system with confidence factors ultimately boils down
asserted into the fact-list of the CUPS expert system to an iterative process of re-adjusting confidence factors and
application. re-testing the rule base on a set of examples. This iterative

process, however, is quite analogous to the process of
Justification For The Use Of Machine Learning training a neural network or a machine learning tool on a
Techniques set of examples. Given this analysis and the fact that most

references on control charts define these patterns by
Machine learning techniques are used to classify five types example, we elected to implement a portion of the
of chart patterns - increasing trends, decreasing trends, classification process using a machine learning tool.
shifts up, shifts down, and cycles. We could find no
references which provide an algorithm for determining Representation Of Control Chart Sub-sequence
whether or not a sequence of real numbers is representative
of one of these patterns. In fact, most references on control The function of the machine learning tool is to classify a
charts define these patterns by example! The most specific sub-sequence of a control chart according to the
mathematical approaches to this problem are found in presence or absence of several standard patterns. A key
references [1,2] on time series analysis and forecasting. question relating to the use of machine learning tools, is
Despite being mathematical in nature, these references still how do we represent an arbitrary length sub-sequence of an
do not describe a deterministic decision procedure. Rather, arbitrary length sequence of numbers as a fixed length
they provide mathematical heuristics. Sample rules-of- vector of real numbers. The approach is to represent a sub-
thumb for a times series of length N are given below: sequence of a control chart as a fixed length vector of
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statistical features. a wide customer base which is continuing to grow as word

of this powerful, easy-to-use software tool spreads.
Twenty (20) statistical features are extracted from each sub- Government agencies now have a no-cost option when
sequence X[1..N] under consideration. Features 1- 10 are looking for Statistical Quality Control and Process
raw statistical features such as linear regression coefficients, Improvement software. In the words of the Air Force
the standard deviations of the first and second halves of the Logistics Command's Quality Programs Directorate
sequence, and the Box-Pierce Q-statistic [1, p 269]. (AFLC/QP), "CSfl has applied a technology, artificial
Features 11 - 20 are Boolean type indicator variables such intelligence (neural nets), and developed a system that can
as whether the sequence has ten or more points and whether be used by real people to solve real problems". Reprints of
one of the regression coefficients is "low* in magnitude. this paper and copies of SPC Version 1.1 are available to
Most of these Boolean indicators were included as a result government agencies and domestic US companies.
of a database analysis on the training sets which produced 1
"statistics" such as "90% of increasing trends have a linear ABOUT THE AUTHOR
regression coefficient greater than 0.8". A more detailed
explanation of the 20 statistical features used to represent a Mark Shewhart is an Artificial Intelligence Systems I
chart subsequence to the AIM Networks is given in Engineer for the Process Improvement Division of the
APPENDIX A. Center for Supportability and Technology Insertion (CSTI)

at Wright-Patterson AFB, Ohio. Mr Shewhart has a B.S.
Training And Test Sets For Machine Learning Tool in Computer Engineering and an M.S. in Applied I

Mathematics from the University of Illinois at Urbana and
Over 70,000 sample chart sub-sequences were generated to an M.S. in Computer Science from Wright State University
train and test the AIM Networks. Most of these sub- in Dayton Ohio. Mark's primary duties involve the I
sequences were generated by adding random noise of management and development of CSTI's SPC software tool.
various magnitudes to existing control charts with existing Interestingly, Mark Shewhart's grandfather and Walter
patterns. Each chart sub-sequence generated a training/test Shewhart, the "Father of Statistical Process Control", were
vector of dimension 25 - 20 real-valued Network inputs first cousins.
(statistical features) and 5 bi-polar (-1 or 1) outputs. One
AIM Network was trained for each of the 5 outputs. Each REFERENCES
AIM Network required from two to six hours to train on a 1
386 machine with math co-processor. [1] Spyros Makridakis and Stephen C. Wheelwright,

"Forecasting: Methods and Applications",Wiley/Hamilton,
Machine Learning Test Results 1978.

The results of the AIM Networks applied to control chart [2] Sir Maurice Kendall and J Keith Ord, "Time Series",
patterns not present in the training sets were quite good. Oxford University Press, 1990.
The increasing trend network classified the test data 97.5% I
correctly, the decreasing trend network 97.3%, the shift up [3] SPC Course Materials, Decision Dynamics Inc., 1990
network 98.8%, the shift down network 98.8%, and the
cyclic network 92.0%. Most (99%) of the errors in the [4] Kaoru Ishikawa, "Guide to Quality Control", Asian I
cyclic network occurred in the short saw-toothed patterns Productivity Organization, 1982.
with added noise. If the saw-toothed pattern is deemed by
experts/customers to be very important, a separate network [5] Perry Johnson Inc., "SPC Chart Interpretation%, Perry I
could be developed for the saw-toothed pattern. This would Johnson, Inc., 1987.
increase the overall cyclic percent correct to about 96 % and
provide a better recognition rate for noisy, short saw- [6] J.M. Juran, Dr. Frank M. Gryna, Jr., and R.S.
toothed patterns. Bingham, Jr., "Quality Control Handbook',Third Edition,

McGraw-Hill, 1974.
CONCLUSION

[7] Western Electric Company, "Statistical Quality Control
SPC Version 1.1 was released in March 1992 and SPC Handbook', Western Ellectric Co., Inc., 1958.

Version 1.2 is scheduled for release in September 1992.
CSTI plans to provide software enhancements to SPC based [8] H. Besterfield, "Quality Control", Second Edition,
upon continuous customer feedback and demand. SPC has Prentice-Hall.
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[9] Douglas C. Montogomery, "Introduction to Statistical (13) DCRD_LOW - An indicator variable used to indicate
Quality Control*. whether DISCORD is less than 0.7. The value of 0.7 was

chosen since a database analysis indicated that a high
APPENDIX A percentage of decreasing trends had DISCORD > 0.7.

Statistical Features Used To Represent Chart (14) HIGH ISD - An indicator variable used to indicate
Subsequemces whether RMS .SD is greater than 1.8. The value of 1.8

was chosen since a database analysis indicated that a high
(1) RMSSU - This is the root-mean-squared difference percentage of shifts-up had RMSSD > 1.8.
between X[I..N] and an "ideal* shift-up pattern.

(15) HIGHISU - An indicator variable used to indicate
(2) RMS SD - This is the root-mean-squared difference whether RMS SU is greater than 1.8. The value of 1.8
between X[I..N] and an "ideal" shift-down pattern, was chosen since a database analysis indicated that a high

percentage of shifts-down had RMSSU > 1.8.
(3) A - This is the simple linear regression coefficient
when trying to approximate the time series X[t] using X[t] (16) GOOD INC MM - An indicator variable used to
f A + Bt. indicate when the sequence minimum was early and the

sequence maximum was late. The first 20% and last 20%
(4) B - This is the simple linear regression coefficient was chosen since a database analysis indicated that a high
when trying to approximate the time series X[t] using X[t] percentage of increasing trends had their minimum and
= A + Bt. maximum within the first 20% and last 20% respectively of

the sequence.
(5) SIGMA_1 - This is the standard deviation of the first
half X[1..N/2] of the sequence X[1..N]. (17) GOOD DEC MM - An indicator variable used to

indicate when the sequence maximum was early and the
(6) SIGMA_2 - This is the standard deviation of the sequence minimum was late. The first 20% and last 20%
second half X[N/2+1..N] of the sequence X[1..N]. was chosen since a database analysis indicated that a high

percentage of decreasing trends had their maximum and
(7) R rootN_r - The percentage of the first N/4+ 1 minimum within the first 20% and last 20% respectively of
autocorrelation coefficients r(k) for which abs(r(k)) > the sequence.
1.96/sqrt(N).

(18) HIGH_R rootN - An indicator variable used to
(8) CHISQTEST - This is the Box-Pierce Q-statistic indicate whether R rootN r is greater than 0.1. The
which is capable of determining whether several object of introducing this variable was to help draw a
autocorrelation coefficients are significantly different from distinction between random sequences and cycles. The
zero. Defined in reference [l,p 269] value of 0.1 was chosen since a database analysis indicated

that a high percentage of cycles and a low percentage of
(9) CONCORD - This is the number of concordances Q random sequences had R rootN-r > 0.1.
in X[I..N] divided by the maximum possible number N(N-
1)/2 of concordances. Defined in reference [2,pp 21-23]. (19) SMALLA - An indicator variable used to indicate

whether the absolute value of A is less than 0.8. The
(10) DISCORD - This is the number of discordances P in object of introducing this variable was to help draw a
X[I..N] divided by the maximum possible number N(N- distinction between random sequences or cycles and the
1)/2 of discordances. Defined in reference [2,pp 21-23]. other chart patterns. The value of 0.8 was chosen since a

database analysis indicated that a high percentage of cycles
(11) TENPLUS - An indicator variable used to indicate and random sequences and a low percentage of other types
if X[1..N] has length less than ten. This is important since of patterns had abs(A) < 0.8.
many statistical significance tests are ineffective for small
sample sizes. (20) MAYBECYCLE - An indicator variable used to

indicate when both R root_N_r > 0.1 and ABS(A) < 0.8.
(12) CCRD LOW - An indicator variable used to indicate This is the logical AND of variables 18 and 19.
whether CONCORD is less than 0.7. The value of 0.7 was
chosen since a database analysis indicated that a high
percentage of increasing trends had CONCORD > 0.7.
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Abstract

Computer-Aided Design (CAD) systems have become an industrial standard for producing high-quality
electronic drawings. Due to the frequent uses of replicated patterns, most CAD systems provide commands
to facilitate grouping of primitive drawing entities as complex entities, such as cells. Each cell can be
manipulated as a whole. Typical examples of cells for architecture design are doors, windows, etc. Cells
improve design quality and speedup the design process. Cells are especially important in a cooperative
environment where different persons use different software packages to access the same piece of information
by referring to the unique representation scheme enforced by cells. Nevertheless, because of the enormous
number of cells, cells are not easy to manage.

This paper presents a prototype system for managing cells using neural network technology. Our system
is embedded in a CAD system and intends to help the CAD user utilize standard cells effectively. Our
prototype system intends to lessen the management difficulty by automatically identifying the cells that are
similar to what the user is drawing and suggesting that the user replace the drawing with standard cells.
This process is done while the user is drawing objects on the screen.

Transformation-invariant pattern recognition is the most important research issue for this system. We have
studied and compared four different approaches appearing in recent neural network literature. We chose to
employ Le Cun, et al's Zipcode Net preceded by Yiiceer and Oflazer's ST blocks and used several rotated
images as training examples to solve the rotation problem.

1 Introduction

Computer-Aided Design (CAD) systems have become an industrial standard for producing high-quality electronic
drawings. Due to the frequent uses of replicated patterns, most CAD systems provide commands to facilitate grouping
of primitive drawing entities, such as lines and circles. Once a set of drawing entities have been grouped together to
form a cell, they can be manipulated as a whole. Cells can be nested, i.e., a cell may contain another cell, and thus
can be fairly complicated. Typical examples of cells for architecture design are doors, windows, pieces of furniture, etc.
Cells improve design quality by forcing objects of the same type to be drawn in the same way. Certain attributes, such
as dimensions, layers, and textural information, are usually attached to the cells. By copying cells, these attributes
are inherited as defaults. Consistency among objects of the same type is thus preserved. Cells also speedup the design
process because replicated objects do not need to be re-drawn.

In addition to improving design quality and speeding up the design process, cells can also facilitate effective com-
munication in a cooperative environment where different persons use different software packages to access the same
piece of information. By using standard cells, electronic drawings can be more easily and more accurately transferred
across different platforms. Accordingly, the U.S. Army Corps of Engineers has spent significant effort on compiling a
set of standard cells to be used in producing electronic drawings.
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I
This paper first discusses the difficulties in managing cell libraries in section 2. One of the essential research issues

in cell management is transformation-invariant pattern recognition. In section 3, we study and compare four different I
neural network approaches to transformation-invariant recognition. In section 4, we give an overview of our prototype
system that utilizes various techniques from these different approaches. Finally, section 5 summarizes this paper.

2 Difficulties in Cell Management

Cell libraries are not easy to manage and use. The Standards Manual for U.S. Armyn Corps of Engineers CAD Systems
consists of more than one thousand standard cells that cover seven categories. These cells are currently stored in I
sixteen cell libraries. When a user needs to access a particular cell, he or she needs to first attach one of these sixteen
cell libraries to the current drawing and then select the particular cell out of nearly 100 cells in the attached cell library.
Most of these cells are named either numerically, e.g. RP0028 for "gas piping", or abbreviated, e.g. SHIG for "single I
hinged door". Without an enormous amount of experience with these cells, a user is unlikely to remember what cells
are in the cell libraries and how to search for them. Moreover, this standard set of cell libraries is still in its initial
phase of development. More cells are expected to be added and radical re-organization of cell libraries might take
place, which further increases the difficulty in managing these standard cells.

One traditional solution is to provide an efficient query facility to search for cells. Since each cell usually contains a
corresponding textual description, in previous work we trained a neural network to learn the associations between cells
and cell descriptions. This network consists of two components: The first component is a backpropagation network in a I
NetTalk-like' setup, to detect keywords in user's queries. This approach has the advantage over traditional structural

approaches (e.g., syntactic parsing) that grammatical and typographical errors can be tolerated. The second component
is a simple constraint satisfaction model2 with weights set manually. This component uses the keywords identified in
the previous phase to find the cell that fits best to these keywords. In this way, the user does not have to search each
cell library sequentially and can type the queries free from any syntactical restrictions. However, the disadvantage of
this solution is that the user must know to ask in the first place, which is not usually the case.

Because of the vast number of cells in cell libraries, a CAD user might be unaware of the existence of certain cell
objects. This problem does not pertain to novice users only. Users experienced in using cells might overlook newly
added cells within the cell library, or be lost due to the re-organization of cells. Therefore, a more effective solution is
to develop an intelligent cell usage assistant that volunteers plausible cells while observing what the user is drawing; I
this solution is the approach taken for this research. With the help of this assistant, the CAD user will be notified if
a portion of his or her drawing bears strong similarity to some stored cell object. Since this assistant is interactive.
omissions of the standard cell objects can be corrected in the design process as early as possible. 3
3 Transformation Invariant Pattern Recognition

One technical difficulty encountered in cell recognition is to recognize transformed or deformed patterns, which is
inevitable when the user is drawing a cell. Martin and Pittman3 suggested using more training examples to achieve
the desired generalizability. However, due to the large number of cells, obtaining a large training set is itself prob-
lematic. Therefore, we are investigating neural network models that specialize in performing transformation-invariant
recognition. The following thus describes and contrasts several such neural network models. I
3.1 Four Different Approaches

Le Cun, et al.", propose a constrained backpropagation network to recognize handwritten zip code digits. The Zipcode
Net utilizes many techniques from the Neocognitron5 such as weight sharing and local connectivity. The hidden layers I
are composed of several feature maps. Local connectivity means that each unit in a feature map receives inputs from a
small region in the preceding layer. Local connectivity greatly reduces the complexity of the network and is supported

IT. J. Seinowski and C. R. Rosenberg. Parallel networks that learn to pronounce English text. Complex Sys temr, 1:145-168. 1987.2 D. E. Ruinlhart and J. L. McClelland. Explorstiona in Parallel Dis.tribted Processing: a handbook of model., programs, and exercisces.

MIT Press, Cambridge, MA, 1968.
3G. L. Martin and J. A. Pittman. Recognizing hand-printed letters and digits using backpropagation learning. Neural Computation,

3:W267, 1991.

4Y. Lt Cun, B. Bower, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computatioa, 1:541-551, 1989.

5 K. Fukushima, S. Miyake, and T. Ito. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE
Transactioan on System, Man, and Cybernetics, 13:826-834, 1983.
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by biological evidences. Weight sharing means that all the units in the same feature map perform the same function by
sharing incoming weights. Since different units in a feature map receive inputs from different regions in the preceding
layer, weight sharing enables a feature map to detect a local feature regardless of where it appears.

Reid, et al.', propose a third-order neural network which takes the transformation invariancy of a triangle's included
angles into account. Their network is essentially a three-layer network, which differs from other three-layer networks in
that the hidden nodes perform multiplications over three input units (cf. sigma-pi unitsS). By sharing weights among
hidden units that accept inputs from similar triangles, it can be proved that this network can perform transformation-
invariant recognition9 . However, combinatorial explosion is inevitable if all possible triangles in the input area are to bemaintained. Spirkovska and Reid"° have suggested strategies for selectively maintaining the triangles. Our experiments

used a rather small number of triangles such that the number of free parameters used in the network is comparable
with that used in the Zipcode Net. Otherwise, the overhead for maintaining an excessive number of triangles makes
the network of no practical interest.

Yiiceer and Oflazer11 propose the use of RIST-blocks to convert the raw image to a normalized image. The origin of
the input area is assumed to be in the center. The T-block first aligns the center of mass to the origin point, thereby
preserving the translation invariance. The S-block then normalizes the average radius of the image to a pre-determined
value and thus maintains the scaling invariance. Finally, the R-block rotates the image such that the x-axis collides
with the axis of maximal variance, calculated by the Karhunen-Lo6ve expansion12. The final image is then fed into
a feed-forward neural network for recognition. It is obvious that the RST-blocks approach is a general pre-processing
technique and can be with any network.

Normal backpropagation is also included for comparison purpose. The next section describes our experiments and3 reports our results.

3.2 Comparison of Different Approaches
We tested these different neural networks using the same data and procedure. The target concept was ten 10x10

II numeric digits. The input area was 16x16 pixels. The learning process was considered to be completed when all
training samples were "recognized" correctly. A training sample was recognized when the target output unit had the
largest activation among all the output units and was above a threshold (0.6), and the diffeience between the largest
and second largest output activations was above another threshold (0.4). A testing sample was recognized correctly
if the target output unit had the largest activation. The testing samples contained various transformed images and
had no overlap with the training samples. Six different configurations for each neural network were tried and their
predictive accuracies were averaged-and reported in Table 1. More detailed description of this comparison will appear
elsewhere.

Our results indicated that the Zipcode Net performed best compared to the Third-order Net and the Backpropa-
gation Net. Although the Third-order Net is theoretically sound, selecting a small number of triangles to maintain in
order to achieve the desired generalizability seemed non-trivial. The Zipcode Net's performance, on the other hand,
seemed less dependent on the network configuration. In a noisy environment, the Zipcode Net without RST-blocks
performed surprisingly well.

The RST-blocks were in general effective for removing the effect of transformations in the raw images. The networks
preceded by the RST-blocks usually gained significant accuracy improvement over their counterparts that without the
RST preprocessing. However, the RST-blocks quickly deteriorated when noise was present. We believed that the
major reason for the RST-blocks' poor performance in a noisy environment was due to the R block. The noise was
inserted randomly and uniformly into the input area. These noisy data should have less impact on the T block and
the S block because of their averaging functions. However, these noisy data smoothed out differences of variances in

61D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in cat's visual cortex. Journal of
Phasiology, 160:106-154, 1962.

1M. B. Reid, L. Spirkovska, and E. Ochoa. Simultaneous position, scale, and rotation invariant pattern classification using third-order
neural networks. Neural Networks, 1(3):154-159, 1989.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In Parallel Distributed
Processimg, Vol. 1, pages 318-362. MIT Press, Cambridge, MA, 1986.

9C. L. Giles and T. Maxwell. Learning, invariance, and generalization in high-order neural networks. Applied Optics, 26(23):4972-4978,
1967.

10L. Spirkovska and M. B. Reid. Connectivity strategies for higher-order neural networks applied to pattern recognition. In Proceedings
of the Second Internatioaal Joint Conference on Neural Networks, volume 1, pages 21-26, 1990.

"C. Yficeer and K. Oftser. A rotation, scaling, and translation invariant pattern classification system. In Proceedings of the Si•lk
International Symposium on Computer sad Informatios Science, pages 859-869, 1991.

32 P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1982.
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n

t/d I Zipcode I Third-order I B:ackpropII w/o IS /M I w/o TI7K' I w/o KST I/w/ KSTI
Translations 1 13.72 53.92 13.54 52.74 10.66 47.57

_ I 19.96 98.83 15.64 99.05 13.64 98.93
Rotations 1 14.81 26.05 17.29 17.91 10.24 16.72

4 46.88 48.85 34.88 41.88 34.80 41.57

Scalings 1 19.83 24.83 16.00 24.00 14.00 19.33
3 64.38 55.00 30.75 46.67 43.75 48.96 1

Noises 1 77.14 14.05 55.24 14.05 54.05 12.14
2 81.67 12.50 55.00 14.72 55.56 11.11

Table 1: Predictive accuracy (in percentage) of different transformation-invariant pattern recognition approaches (t/d
signifies the number of training samples per digit).

different directions and made the R block unable to correctly determine the rotation angle 13 .
Using more training samples per digit also yielded the improvement on accuracy. This is a traditional way to

improve the accuracy. We believed that using more training samples was especially useful for handling the rotation
problem in our current case. On one hand, in the design of floor plans, most cells only rotate by a multiple of 900. We
do not have the burden to make our system recognizer cells of arbitrary degree of rotation and thus can use relatively I
fewer training samples per cell. On the other hand, the R block's sensitivity to noise might not be appropriate because
that some extraneous entities such as marks for grids might appear in the drawing. Based on these observations, we
developed a prototype system for cell recognition, which is described in the next section. I
4 A Prototype System for Cell Recognition

We have implemented a prototype program for cell recognition in the Intergraph MicroStation System. The whole
program consists of two phases. The first phase, tke focusing phase, determines where the user is currently working
and captures the surrounding screen image. The second phase, classiJfication phase, then uses a neural network to
determine what the user is drawing based on the captured image. The neural network returns the indices of two cells
that are most similar to the input. The system then displays these two cells in another window and allows the user to
select the suggested cells. The following two sections will describe these two phases in more detail.

4.1 The Focusing Phase

Our system allows the user to draw freely at any location in the design window. The focusing phase must therefore
determine which group of drawing entities should be captured and fed into the neural network ;'or classification.
Obviously, the most recently drawn or modified drawing entity must be part of the object that the user is drawing.
However, it is not trivial to determine whether the user is starting a new object or has drawn a portion of the object,
and in the second case, what the other parts of the object are. Two characteristics, spatial and temporal proximities,
associated with cell drawing processes provide us with a clue about how to approach this problem. First, cells tend
to be localized and in smaller scale with respect to the whole drawing, which we consider as the property of spatial I
prozimity. Second, we have argued elsewhere14 that a CAD user tends to complete the drawing of one object before
starting on another object, which we consider as the property of temporal prozimi•y. Based on these two properties,
we can maintain a window, both in time and space, to monitor the user's drawing process and determine where the
user is focusing his or her drawing activity.

Using the property of temporal proximity, a window, W, is maintained to cover the last n entities drawn consecu-
tively. The window size (n) is then decided by assuming the property of spatial proximity. When an entity is created
or modified, a window, w, containing this single entity is also created. The spatial relationship between W and w I
determines how W should be modified to accommodate the newly created or modified entity in w.

We have categorized the spatial relationship between W and w into four types. First, if w is far away from W, we
asmume that the user is starting a new object and make w the new W. Second, if to is close to W or to is overlapped
with W, we enlarge W to cover to. Third, if to is inside W and to's area is far smaller than W's (if to contains a

13In Yiceer and Oflaer's original work, noise was added to the characters on the foreground only, while our study added noise also to

the background.
"14 Dershung Yang and Doris S. Shaw. Object recognition in the design environment: A neural network approach. In Proceedings of te I

Mti IJternstionsl Confere•ece os Systems Reeesrck, Jrnfo.mastics, and Cybernetics, volume 1, Baden-Baden, Germany, 1992.
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Figure 1: Examples of interactions between the user and the program. See text for details.

horizontal or vertical line, then the comparison is based on the length rather than on the area), we also assume that
the user is starting a new object and let W be w. This situation typically happens when the user finishes the layout
and begins to work on the details. Finally, if w is inside W but occupies a large area in W, then we make no change
to W because the user might still be working on the same object.

After W is updated, the bitmap image in IV is captured and fed into the neural network for the second phase.

4.2 The Classification Phase
The bitmap image captured in the focusing phase is normalized both in size and in location into the center of a 48 x 48
pixel input area, using Yiiceer and Oflazer's ST blocks. (The R block is not used due to its sensitivity to noisy data.
Rotations are handled by presenting 4 rotated images per cell, one for each 900, as training examples.) The system
then feeds the normalized image to the embedded neural network for classification.

. The Zipcode Net (Le Cun, el al.) was chosen as the neural network architecture. The training examples consisted
of 23 cells that are most commonly used in the design of architectural floor plans. With four different directions per
each cell, there were total of 92 training examples. The network consisted of three hidden layers. The first hidden
layer had 6 feature maps, each of size 15 x 15 pixels. The second hidden layer also had 6 feature maps, each of size 6 x 6
pixels. The third hidden layer consisted of 15 nodes. Connections between the output layer and the third hidden layer,
and between the third hidden layer and the second hidden layer were fully connected. Each pixel in the second hidden
layer received inputs from a 5 x5. kernel from all the feature maps in the first hidden layer. Two kernels corresponding
to two adjacent pixels were offset by 2 pixels. Each pixel in the first hidden layer receives inputs from a 6 x 6 kernel in
the input layer. Two adjacent kernels were offset by 3. The total number of nodes was 3908 and the total number of
free links was only 4701 due to the weight sharing and local connectivity techniques. The training process was identical
to that described in section 3.2. The network converged after 1156 cycles.

Preliminary tests of this prototype system showed encouraging results. Figure 1 shows three examples of how the
CAD user interacted with our system. In each pair of examples, the left rectangle shows the user's drawing and the
right rectangle shows the cell identified by our program. (We only show the cell with the largest activation.)

5 Summary
In summary, this paper presents a practical use of neural network technology. Our prototypical system is embedded
in a CAD system and intends to help the CAD user utilize standard cells effectively. Cells play an important role to
facilitate communication in a cooperative environment. However, the number of cells is enormous and thus difficult to
manage. Our system intends to lessen the difficulty by automatically identifying the cells that are similar to what the
user is drawing and suggesting that the user replace the drawing with standard cells. This process is done while the
user is drawing objects on the screen.

Transformation-invariant pattern recognition is the most important research issue for this system. We have studied
and compared four different approaches appearing in recent neural network literature. Our results indicated that the
Zipcode Net performed best compared to the Third-order Net and the Backpropagation Net. In a noisy environment,
the Zipcode Net without RST-blocks performed surprisingly well. The RST-blocks were in general effective for removing
the effect of transformations in the raw images. Nevertheless, the HST-blocks quickly deteriorated when noise was
present. We believed that the major reason for the poor performance of the RST-blocks in a noisy environment was
because of the R block. Therefore, our system employed the Zipcode net preceded by the ST blocks only and used
several rotated images as training examples to solve the rotation problem.
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ABSTRACT

This paper first discusses the present state of the art of TPS (Test Program Set) diagnostic approaches and then
surveys the literature available on the use of neural networks for TPS diagnostics. Next, our approach to
mapping the TPS diagnostic problem to a supervised Back Propagation neural network solution is presented.
Techniques used to collect and pre-process the training patterns for the neural network are covered. Finally,
simulation results for a simple sequential digital UUT are reported, and our plans for future research are

i outlined.
I. Introduction

Full diagnostic Test Program Sets (TPSs) require skilled engineering development effort. This paper
describes an effort currently underway to partially automate the Fault Isolation/Diagnostic portion of this
problem using neural networks.

A TPS is made up of the hardware (ICD or Interface Connecting Device), the software (test program
Go-Chain and diagnostics), and the documentation required to test and maintain a UUT. The TPS is used in
conjunction with Automatic Test Equipment (ATE). The TPS hardware interfaces the UUT physically and
electrically to the ATE.
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A set of UUT test stimulus vectors that are known to be effective in detecting faults are prepared I
beforehand (the Go-Chain). Faults are inserted into a UUT, the stimulus is applied to the UUT, and then UUT
response vectors are collected. A compressed version of the resulting UUT stimulus/response vector set is then
used as input to train a supervised neural network. Knowledge of which fault is associated with which vector I
set is used to generate the corresponding desired outputs for training the neural network. Once trained, the
network takes as input the compressed UUT operational connector behavior and provides as output the fault or
faults that are present in the UUT. 3

Potential advantages of a neural network solution include the following: No (or reduced) TPS operator
probing for fault isolation; improved ability to deal with the presence of multiple faults; reduced TPS
development time; reduced TPS Mean Time to Diagnosis (MTTD); improved ability to deal with th;. lack of
UUT initialization, due to either the presence of faults or a lack of testability; and reduced TPS maintenance
costs due to UUT design changes.

Currently the AN/USM-465A digital card tester is being used in conjunction with a simple sequential
digital UUT. Initial results are encouraging for UUTI, using a two layer neural network and a readily available
ANIUSM-465A function for data compression. The fault universe considered to date is all possible, non-
destructive Stuck-At-Zero (SAO) and Stuck-At-One (SAl) faults.

II. TPS Diagnostics, Current Approaches and Problems 3
Given that an effective test program or set of test stimulus vectors are available (the Go-Chain), the

problem is then to determine if a UUT is good or faulty, and if bad, what component on the UUT is bad.
Current fault isolation techniques make use of information available at the UUT's operational (edge) connector,
as well as information collected by probing the internal nodes of the UUT. It is desirable to minimize or
eliminate the amount of probing required. This reduces the need for UUT disassembly, operator positioning of
the probe, piercing of the UUT's conformal coating, the subsequent need for repair of the conformal coating,
and the potential for operator mis-probing and resulting UUT misdiagnosis.

A "Go-Chain" is typically used to determine if the UUT is good or bad. Once it has been determined
that the UUT is bad, it is often necessary to use special diagnostic routines (stimuli as well as measurements I
that are not part of the Go-Chain) to isolate the faulty component(s). These diagnostic routines are often costly

to develop and are prepared by an engineer based on an analysis of the UUT's circuitry, simulation of UUT
behavior, and on empirical test (fault insertion) results.

There are several widely used Computer Aided Test (CAT) tools on the market for digital UUTs.
CAT tools for analog TPS development are less useful. For very "testable" digital UUTs, the CAT vendor's
canned, and typically proprietary, diagnostic algorithms can be used in conjunction with simulator-generated
data to provide UUT diagnostics. By "testable," it is meant that the UU'I is more or less compatible with the
ATE. One very important measure of testability, common to all brands of ATE, is the ability to quickly bring
the UUT's internal state storage elements to a known state: initialization.

Even if it is possible to initialize a good UUT, it is likely that there are several UUT failure modes that
prevent initialization. When initialization is not possible, the UUT might respond differently from one run
(application of the test program to the UUT) to another run. Accounting for this varied behavior in the test
program can be very difficult and costly.

Fault dictionary approaches to TPS diagnostics, which require less TPS development time, typically run 3
an order of magnitude faster than guided probing approaches. Using a fault dictionary approach amounts to
making note of where (which edge pins) and when (what test step) a particular fault is first detected in the Go-
Chain and hard coding an appropriate fault callout response. However, due to the initialization problem it is
often not practical to use a fault dictionary or look-up table.
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For modern complex UUTs the number of test steps in the test program can be in the millions.
Storage of UUT node vectors can thus be demanding. Another ATE approach, implemented in the
AN/USM-465A, is to compress the node/state data into a signature. Various proprietary techniques are used
for this operation. For the AN/USM-465A, two six digit signatures are used per node. A known good UUT is
required to generate the signatures. This data, combined with a topological map of the UUT (component input
to output relationships are encoded using component reference designators), is then used along with a
proprietary guided probing algorithm to isolate faults.

A common simplifying assumption is that there can exist only one fault in the UUT at a time. In the
case of TPSs developed for the US Army, TPS acceptance testing is typically limited to the insertion of a single
fault. This assumption is made to keep the costs practical for Go-Chain and diagnostic routine preparation.

Another simplifying compromise is to discontinue the fault isolation process prior to indicting only a
single component. It is sometimes not possible or practical to isolate to a single component, even when only a
single faulty component is present in the UUT. In cases like this it is customary to isolate to an ambiguity
group of components, any one of which may be the single faulty component. This approach is used for US
Army TPSs. A sampling of 608 fault callout messages from 23 different fielded US Army SINCGARS
AN/USM-465A TPSs indicates that the average number of components per call-out is about 2.4. As the
average component gate count and complexity increases this approach is rapidly becoming less viable.

A review of the literature revealed previous work in the area of TPS diagnostics using neural networks.
Reeder and Koos [1990] gave no quantitative results and indicated that they had decided to avoid sequential
digital circuits for their first experiments and stick to combinational logic only. They also expressed a
preference for using simulated fault insertion over actual hardware fault insertion. In addition, Reeder and Koos
indicated that it was important to take into account historical component reliability data when selecting the types
of faults for generation of backpropagation neural network training patterns. '

Jakubowicz and Ramanujam [ 1989] reported developing a capability to direct or assist a technician
during the fault isolation process using a neural network approach based on Kohonen feature maps and the delta
rule. Their network then showed an ability to identify the correct fault or propose the next test. In this
approach, UUT specific fault/symptom information is presented to the network, as are some basic search
procedures. The network is taught, for example, the binary search process, or search schemes based on
component reliability.2

In contrast to the work done by Reeder and Koos, we use hardware fault insertion, and a UUT with a
memory storage element. In contrast to the Jakubowicz and Ramanujam [1989] approach, we use only a
supervised beckpropagation neural network and make immediate fault callouts.

III. Mapping the TPS Diagnostic Problem to a Neural Network Solution

The main problem anticipated by the authors when first considering a neural network solution to TPS
diagnostics was the sequential nature of UUTs. A typical real world UUT may require millions of stimulus

'T. R. Reeder & L. J. Koos, *A Neural Net Approach to Electronic Circuit Diagnostics', Proceedings of
IJCNN, January 1991, vol. II, P. 671-674.

'Jakubowicz 0. and Ramanujam S., "A Neural Network Model for Fault-Diagnosis of Digital Circuits%,
Proceedings of UCNN, January 1991, vol. II, P. 611-614.
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vectors for complete testing, and thus millions of response vectors. The order of application of the stimulus I
vectors to the UUT is also critical. Typical approaches to problems of this nature are to adjust the sampling
rate of the data to as low a rate as feasible, and then to 'bin" samples by applying some type of compressing
transformation to the data. In our approach, UUT nodal states are sampled after every test step. Edge node m
behavior is compressed into a single six digit signature (CRC-16). This was particularly convenient since the
ANIUSM-465A has this data compression capability built in.

For UUTI we chose a simple neural network architecture and paradigm. We use a supervised
backpropagation paradigm. After experimenting with the number of hidden layers and the number of nodes per
hidden layer, we obtained good performance with only two layers (i.e. no hidden layers) and a linear transfer
function. We do, however, expect that more complicated UUTs will require correspondingly more complicated
architectures.

nodes. Each UUT failure mode considered (i.e. each SAO and SAI fault) is mapped to its own output of the
neural network. For two layer, linear transfer function, neural network training it was not necessary to
normalize the input data which ranged from 0 to 9. For three layer, non-linear training each digit of the UUT
six digit signature was divided by 10 for compatability with the hyperbolic tangent transfer function.

The desired outputs used to train the networks were set at + I to indicate the presence of a particular
fault (or of a good UUT) and to -1 for the rest of the faults not present when the UUT edge signatures were
generated. There are a total of nine edge pins on the UUT (7 inputs and 2 outputs). Both UUT input and UUT
output pin signatures were used as input training patterns to the network for the majority of the experiments
conducted. Thus there were a total of 54 (9 x 6) neural network inputs. UUT1 has a total of four internal I
nodes (TP1 through TP4). These four internal nodes, combined with the nine edge nodes, make for a total of
13 nodes for fault insertion. Inserting both SAO and SAI faults on all 13 nodes, allowed for a total of 26 faults.
Thus the network was constructed to have 26 output nodes, plus one output node to represent a healthy UUT
giving a total of 27 output nodes. This mapping of the faults and output values allowed for easy interpretation
of the network's response. The output with the largest or most positive value was interpreted as being the
network's indication of which fault was present.

Neural Network Nodes
6 Digit Signatures (54-?-27) Failure Mode
From UUT1 Edge Pins Inputs Outputs Interpretation

/ \ /
1 0 0 1 UUT GOOD
2 0
3 0 0 2 IN -SAO

INI 4 0 0 3 IN2 -SAO
5 0 I
6 0 0 7 IN6 -SAO

0 8 IN7 -SAO
7 0

IN2 0 9 OUT1 -SAO
12 0 0 10 OUT2 -SAO

etc.

Mapping of the TPS Diagnostic Problem to a Neural Network Solution

I
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IV. Simulation Results

A. Training Results (2 Layer vs. 3 Layer)

100% performance was achieved with both two and three layer networks. As it turned out, we
found that there were only 22 faults that produced unique edge pin signatures for UUT1. Four of the faults
(26 - 22 = 4) produced redundant UUTI edge pin behavior. This was discovered when trying to understand
some initial poor network performance. As a result a software utility was developed which screens for
duplicate input-output pattern pairs. When two different faults inserted into the same UUT produce identical
edge pin signatures, this will produce a contradicting case for the network. In this case, the inputs to the
network are equal, but the network is expected to produce two different output responses. The table below
summarizes the pattern types screened by our utility.

Inputs Outputs Type of Input-output
Equal Equal Pattern Pair

No No Typical Training Patterns
Yes No Contradicting Patterns
No Yes Classification Challenge
Yes Yes Identical/Redundant Patterns

Neural Network Training Pattern Types

B. Initialization Test Results

The test program for UUTI was rewritten in order to test the key issue of the network's ability
to deal with a lack of UUT initialization. For this test, the latch of UUT1 was manipulated to both of two
possible states for edge pin signature collection. Each of the 22 faults were inserted after starting the latch's q-
line out at a logic low. Fault insertion was then repeated while starting the q-line at a high level. As could be
expected, several of the faults, when inserted into UUTI, removed the pre-programmed initial condition from
the latch. However, it was found that a total of 14 of the 22 faults inserted produced different edge pin
signatures, depending on the power-up state of the latch (i.e. classification challenges). We trained the network
with data generated when the q-line started out low and tested the network with data generated when the q-line
started out high. The training performance reached 100% within a few hundred epochs (same order each time
and sequential weight updating was used). As mentioned above, eight of the 22 test patterns were identical to
eight of the training patterns, due to the faults removing the initial conditioning of the latch. The network
successfully generalized for 12 of the remaining 14 patterns. One of the two missed patterns was for UUT
good behavior. The other was a flat out miss by the network. Since we have the Go-Chain, we do not have to
rely on the network for determining whether or not the UUT is good or bad. Therefore we scored this test as
being about 92% (12/13) successful. In other words, for a very simple UUT our network was able to correctly
generalize in order to handle the initialization problem 92% of the time.

C. Two Fault Test Results

The setup for this experiment is to train with U7T edge pin signatures generated from the insertion of
a single fault and test the network with signatures generated when two faults are inserted into UUTI. We were
only able to insert a total of 20 fault pairs. Two of the 20 patterns were found to contradict other patterns, and
were eliminated. For inputs to the network generated with two faults present in UUTI, the two largest actual
outputs from the network are interpreted to be the two faults indicted by the network. This experiment is still in
process.
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D. SAO vs. SAI Test Results I
To test for the network's ability to generalize across fault types at a given node, the network is

trained with UUT edge pin signatures produced from SAO faults and then tested with SAI patterns. Although i
this effort is still in process, initial results look promising. We expect to get results comparable to those had
during the test for initialization.

E. UUT Outputs Only Test Results I
For this experiment, the patterns from the initialization test were modified. The signatures in

all network input patterns corresponding to all UUT input edge pins were eliminated. The network's
architecture was altered correspondingly. A total of only 12 input nodes remained (reduced from 54). Six of
these correspond to each of UUTI's two output edge pins. This effort has not yet been completed.

V. Conclusions and Future Directions

Although we are presently working with a very simple UUT, we are encouraged by the fact that simple
network architectures are handling some of the basic TPS diagnostic issues. We feel that our approach will
scale sufficiently to provide a useful compliment to present diagnostic development techniques, for more
complex UUTs. Future plans include: investigate the relative effectiveness of various methods of compressing
the training data; study the relative effectiveness of different network architectures at generalizing successfully I
in the presence of previously unseen input test data; work with more complex digital UUTs; and work with

analog UUTs.

UUT1 schematic

U2U

I
I

7!

I
I
I
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ABSTRACT

Computer Algebra Systems (CAS) have been growing in power and sophistication extending by several orders of
magnitude our ability to develop both exact solutions and expansions in terms of a parameter. The availability of
stable and flexible CAS has allowed the Scientific and Engineering communities to tap into such systems with
impressive results.

We present three examples of the use of CAS in the field of Neural Networks: 1) the automatic generation of
network code from general specifications of a network, 2) the inheritance of weights from one network to another
and 3) an expansion of the difference between sequential and cumulative update strategies for the Back Propagation
(BP) algorithm in terms of the learning rate.

Such techniques should be viewed in a unified way and the examples provided are illustrative of the myriad possible

applications of CAS for Neural Networks.

1. INTRODUCTION

The first and mnst straightforward application is the use of GENTRAN for generating C or FORTRAN code from
a genwal specification of a neural network in REDUCE, allowing great flexibility in network design. This can be
dome, for example, by specifying different error functions and nonlinear "squashing' functions and automatically
generating the numerical code to implement the corresponding network.

The second application is that of the inheritance of weights from one network to another. A fast learning but less
than optimal network is trained first. Inheritance equations, derived via symbolic algebra, are applied to transfer
the weights to the slower but optimal network, thus completing the training phase. Alternatively, for networks
where learning and feed-forward phases have different > I and < 1 speeds as compared to a standard, the training
can be implemented on the faster learning network while the feed forward (operation) phase is left to the other.
A typical example is that of the Probabilistic Neural Network (PNN) [12] when compared to Back Propagation (BP).

The Wird and final example arises in a number of situations, where expansions in terms of a parameter are
appropriate for a neural network. The learning parameter in an adaptive system is usually a *small' number. It
as also possible to write addition formulae for the sigmoid or hyperbolic tangent, which when coupled with their
< I I range, result in expansions that preserve nonlinear properties while retaining only a few terms. Such
expansions can be carried out by the use of CAS. An example of such techniques is presented where the difference
between sequential and cumulative update strategies for BP is expanded in terms of the learning rate.

2. AUTOMATIC GENERATION OF NETWORK CODE

In fesdforward networks of the backpropagation type, the number of hidden nodes, the nature of the squashing
fimctika, the error function and other parameters are usually determined experimentally for lack of a firm theoretical
framework to optimim their choice. While theoretical work towards developing such a framework is ongoing, many
renehers find dhemselves rewriting code appropriate to a variety of situations. The use of symbolic languages
can alleviate the problem. The example we will discuss is that of the code generation system GENTRAN running
under the computer algebra system REDUCE [7].
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A simple example of code generation and the resulting C and FORTRAN code is given here. The following code
fragments are written in REDUCE and the function eval, evaluates the expression of its argument. Here both the
nonlinear squashing function and the error function are left arbitrary and their subsequent definition is unfolded in
the numeric code. Note that the necessary derivatives for the backpropagation phase can be generated likewise.

i
load "gentran$
gentnmlang!* :- 'c$ COMMENT LANGUAGE IS C $
on getdecs$ COMMENT AUTOMATICALLY GENERATE TYPE DECLARATIONS$ I
operator f$
for all x let f(x)=tanh(x)$ COMMENT CHOOSE A TRANSFER FUNCTION HERE$
for all x let fincerror(x) - x**2$ COMMENT CHOOSE AN ERROR FUNCTION HERE$

gentran
for h:- l:nHidden do
< <

nethid(j): - for i: - 0 : nInput sum u(h,i)*x(i)$
hid(j): - eval(f(nethid(j)))$

> > $ COMMENT TRAVERSING FIRST LAYERS

gentran
error. - for o: - 1: nOutput sum eval(funcerror(des(p,o) - out(o)))$
COMMENT COMPUTING THE ERRORS
endS

3. INHERITING KNOWLEDGE IN NEURAL NETWORKS I
It is important to develop techniques to transfer "knowledge" between two networks. Some previous work has been
done in this direction by inclusion of non linear elements [2,31, modular approaches that are later 'glued" [13,4,5], I
and taking advantage of the principle of Least Action [8,9]. Here we take a direct approach to the question of
inheritance. Networks S (source) and T (target) are implementing two different mappings S(w.,x) and T(w,,x)
respectively, where x is the input vector and w. and w, represent the respective weight vectors. In order to derive
the inheritance equations, one writes an expression of the form

JAwW~) - f p W d[s(wx) - 7Xwrx)]dx

where J is to be minimized with respect to the w,. d is a distance measure between the outputs and p represents
a distribution density. p could simply represent a distribution such as that of the training patterns and/or a weighing
factor such as a factor favoring large errors where large dollar amounts are involved in a financial application. I
Minimization of J is achieved by requiring the derivatives with respect to w, to vanish. Two situations of interest
arise. The first is where the source network S achieves a suboptimal classification with fast convergence while the
target network T reaches optimal (or at least better) classification with slower convergence. One would train S first,
transfer its "knowledge" to T and proceed with training T. The second situation where such inheritance is fnritful
is that where S trains faster but T executes (feeds forward) faster, without necessarily having different performances.
Training with S and transferring the weights to T for execution is desirable. For example, claims have been made I
that in some applications, Probabilistic Neural Networks [121 train orders of magnitude faster than Back Propagation[6] while executing about one order of magnitude slower.

As an application consider the problem of feedforward networks. We start with a two layer network with fast but
limited learning capability. Since three layers are sufficient [1], we attempt to inherit weights from the two layer
net to a three layer net. An arbitrary number of hidden units, H, and, the same number of input units, I and output
units 0 a thon of a two layer net are to be used. The weights in the first weight layer are denoted by Wt, for
weight connecting input node i to hidden node h. Similarly, the weights connecting hidden node h to the unique

I
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output node is denoted by v0. The nodes of the two layer net are denoted by wi. The problem can now be stated
as follows:

"For a given two layer network, having been trained and resulting in weights %ý, i-0, ... , I-1, find weights d, and
v0, i-O, ... , I-i and 1i-O, ... , H-i, such that the resulting three layer net best approximates the performance of
the two layer network in the LMS tese."

Setting:

AV a f(4x,)x,

Be EAurx).Aub 4)

Cal,1 - Ex/ý(U.X)X,

For known W, one derives the following equations (IxH of them)

[C,-Dý,(Bl)M AV]wJ - 0

representing IxH (nonlinear) algebraic equations in the IxH unknowns u,.
Once these equations are solved numerically, one can use

(B-')'aAtjwJ a v=

to determine the v's. Notice that equations for the unknown weights u's and V's are decoupled, and that the v's are
essentially solved for, provided B can be inverted. Programs such as REDUCE, MACSYMA or MATHEMATICA
[7] cam be used both to write the required expressions and to solve the equations. The inversion of the B matrix
is not problematic since B is an H dimensional square matrix and H is typically smaller than I. Resulting equations
for the u's can become involved. These are, however, polynomial equations since there exists a polynomial relation
between the squashing fimction and its derivative as well as rational relationships between the squashing function
of a sum and the squashing function of individual terms in the sum. For example, for the hyperbolic tangent the
following relationships hold:

tanh'(x) 1 - an (x)

tanh(a+b) - tanh(a)+tanh(b)
I ÷tanha tanhb

Similar equations are easily derived for the sigmoid. Such relationships, allow for writing polynomial equations
in the hyperbolic tangent of the individual weights. This in turn, allows the use of Symbolic Algebra programs,
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I
as they are well suited to polynomial manipulation, including truncation of higher order terms in search for 3
approximate solutions. The truncation of higher order terms originates from the fact the hyperbolic tangent is
always smaller than one and the product of several such terms becomes negligible in comparison to an individual

The above approach applied to XOR and parity problems results in significant speed up factors [10]. A number of
advantages should be noted.
- Results ame problem independent in the sense that no output information is specified. This makes a symbolic I
solution very attractive.
- Some local minima can be side stepped, avoiding non optimal solutions and contributing further to faster
convergence as the number of restarts is decreased.
- In the two-to-three inheritanc, equations for u and v are decoupled. The equations for u, though nonlinear, are I
amenable at least to an approximate solution. In some cases as in the 2 X 2 X 1 net, they simply become
identities. 5

4. A SERIES EXPANSION FOR SEQUENTIAL-CUMULATIVE UPDATES

This last example of the use of CAS, develops an epsilon expansion of the difference in the values of the weights
at the end of an epoch, when sequential and cumulative updates are used. Different claims are made in the literature
as to the merit of the different updating schemes. We have shown that, in first order in the learning rate, epsilon,
there is no difference at the end of an epoch between the two schemes. The development of the result in its more.
general form is based on the availability of Computer Algebra Systems, to allow for the required expansions in the
nontrivial cases [11].

S. CONCLUSION 5
Computer Algebra Systems can play a crucial role in the ares of Artificial Neural Networks. This has been
illustrated in solving both theoretical and very practical problems. Despite the general perception that neural
networks am generalized numerical algorithms, the use of symbolic tools is a powerful complement to numerical
techniques. The availability of flexible systems and powerful platforms make CAS a practical tool for current
scientific and engineering applications. 5
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Abstract

In this paper, ionic conduction in excitable cells, the well-known
membrane equation, is shown to lead to simple analogue electronic
circuitry with rich processing capabilities. The paper starts from simple
components and demonstrates increasingly complicated processing by
fusing the components together.

1.0 Introduction

The classic Hodgkin-Huxley1 model of ionic flow in nerve membranes is shown in Figure 1 and

described by the equation

dV (+ g+
CE=(V -V)g + (V -V)g-+(Vp- V)gp (1)

where C is the membrane capacitance; V+, V-, and VP are excitatory, inhibitory, and passive saturation
points, respectively; and g+, g-, and gP are excitatory, inhibitory and passive membrane conductances,
respectively.

V C 9P g" g÷

Figwe 1. An isopotential patch of membrane. Batteries show Nernst potentials; g+, g-, and gP are,

respectively, passive, excitatory and inhibitory conductances.

lHodgkin, A. L. and Huxley, A. F. (1952). "A quantitative description of membrane current and its application to conduction
mid excitation in nerve," Journal of Physiology, 117, 500-544.
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Many neural network models can be derived by assigning variables to Equation (1). For example, letting the I
Nernst potentials (modeled by the batteries) to be zero, ignoring the excitatory ionic channel g+, and
considering the case where the inhibitory conductance is controlled by the voltage of other cells, that is, g- =

fj fj (xj), we obtain

a ffi Ii-Axi- xi fj ( xj) (2)

where the capacitance value is set to 1, Ii are (excitatory) current inputs to the cell, and A is the passive
membrane conductance. This is a multiplicative lateral inhibitory feedback neural network. The multiplicative
nonlinearity arises from conductance modulation and endows such networks with important computational
capabilities. 2 It is a straightforward matter to show that feedforward, or nonrecurrent versions of neuronal 3
interactions are obtained when the conductances are modulated by inputs, rather than the activity of other
cells as is the case in (2).

The Hodgkin-Huxley equation thus provides the crucial insight for the electronic circuit designers
that models of neural networks can be constructed from electronic devices or circuits whose conductance 1
may be varied as a function of voltage or current values. The simplest such device is a single Field-Effect
Transistor (FET) which, when operated below pinch-off, acts as a voltage-controlled conductance. The next 3
sections show feedback and feedforward networks which can be built from these elements.

2.0 Feedback Neural Networks

Figure 2a shows a simple electronic analogue of the biological model of Figure 1. The inhibitory
conductance is an FET whose conductance may be modulated by the voltage present at its gate. If this
voltage is applied by other cells of the network layer, feedback interaction results; if this voltage is controled
by the previous layer, feedforward results. Figure 2b shows a recurrent network of four cells, connected to
every other cell but not to itself, in a cross-bar layout. It is seen that each multiplicative interconnection is
economically implemented by one transistor. Such implementations are truly analog in that the device physics *
performs the "computation" and no digital to analog conversion, or vice versa, is required. 5

Using analytical models for operation of FETs in the linear region, it can be shown that3 for small
values of node voltage the circuit of Figure 2b is described by Equation (2). This mathematical description -
also allows the network to be analyzed and its compatibility with different architectures, its stability, and a
classification properties examined.'

Response of a network of 32 cells, connected to their nearest neighbors, to a point source stimulus
located on cell number 17 is shown in Figure 3. In this figure, the ratio of the stimulus to its surround has
been kept at 2:1 but the mean input value has been changed to study the effect of varying mean light intensity
on reflectance processing. The characteristic Mexican hat response is clearly observed at high mean
intensities, but the inhibitory influence is reduced with decreasing available total input intensity. Similar
change of the receptive field can be observed in many biological units including the DMC cells of the fly U
lucilia sericata as shown in the inset of this figure. A detailed analysis of field adaptation as a function of

2 For a review see Grossberg, S. (1988)."Nonlinear Neural Networks: Principles, Mechanisms, and Architectures," Neural
Networks, vol. 1, 17-61. 3
3 Nabet, B., Darling, R. B., and Pinter, R. B. (1989). "Analog implementation of shunting neural networks,* in Advances in
Neural Inforrmadon Processing, Vol. 1, D. Touretzky ed., 695-702. 1
4Nabet, B. uid Pinter, R.B. (1991). Sensory Neural Networks: Lateral Inhibition, Boca Raton: CRC Press.
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mean input intensity in visual systems can be found elsewhere.5 Other properties of this network include
contrast enhancement, as apparent in Figure 3, and dynamic range compression. 6

LL

I Figure 2. a) Electronic circuit analogue of the membrane model of Figure 1 using FETs as variable
conductances; b) A four cell feedback network.
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Figure 3. Response of a 32-cell network, nearest neighbor connected, to a point-source.The ratio of thecontrast of the point source with respect to its surround was kept constant while mean intensity was

decreased from top to bottom. Inset shows similar response of the DMC cells of the fly.

3.0 Feedforward Networks

As noted above, application of a voltage from previous layers of processing to the membrane analogue of
Figure 2a produces multiplicative, or shunting; feedforward networks. A network of four cells with self-
excitation and nearest neighbor inhibition is shown in Figure 4. The top portion of this circuit is the familiar
crossbar architecture which defines the connectivity pattern of the network. The input lines are shown as
voltages and are also available in inverted form to allow both excitation and inhibition. The lower array of
transistors performs multiplication and nonlinear transformation of the input.

The circuit of Fig. 4 can be approximately described by

i
5Pinter, R. B. and Nabet B. (1991). 'Field adtaptaon in visual systems is a function of nonlinear lateral inhibition", in NeuralI Networks: Concepts, Applications and Implementaaons, vol. 3, P. Antognetti and V. Milutinovic, eds., 21-48.

6 Details appear in Nabet, B., Darling R.B., and Pinter, R.B. (1992)lImplementation of Front-End Processor Neural Networks,"I Neural Networks, VoL 5, in press.
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dx (ii I 2 1
dxi =ai -bi xi - xi (• Vj/R j )+Ci xi Vi (3)

jt I

where the capacitance is taken as 1, Vj's are input, xi is output of cell i and ai, bi, and ci are constants
dependent on device characteristics and circuit parameters. The term in parentheses in the right hand side of
(3) shows the desired multiplicative effect which causes an automatic gain control that allows the large input
dynamic range to be processed by the network.

U n
31

£ I
SI I

Figure 4. Circuit implementation of a shunting feedforward network. Nearest neighbor connections and g
self-excitation is shown for four cells.

A network of 80 cells with self-excitatory and two nearest neighbor inhibitory connections was *
simulated in PSPICE. A staircase input pattern ranging from 2 to 12 volts with 1 volt steps was presented to 5
the network. The output of each neuron was limited to almost one tenth of the input range. The results of the
implementation are shown in Figure 5. The output has the distinctive pattern of lightness perception in
psychophysical experiments wherein edges are enhanced while uniform areas are attenuated. The network I
has also represented aninput range which is an order of magnitude larger than the dynamic range of each
neuron and at the same time has preserved and enhanced the edges which contain the most information in theimage. 3

Figure 5b shows an identical network which is operated in a region of transistor operation which
does not have the multiplicative effect. Although both networks are allowed similar range of activity, at
lower and higher values of input, assigned output levels are barely distinguishable in the network without
gain control. 1

4.0 Motion Detection

The connection strengths of the networks described above are hard-wired. Addition of a second gate I
to the transistors of Figure 2a is a simple means of acquiring programmable connection strengths. The limit
of programmability is a bi-level choice. This can be used in the networks described above to produce a
unidirectional receptive field, that is, unidirectional shunting inhibition. This pr file has direct application in 3
determination of the direction of a moving image. It is known that both functiori,i and anatomical models of
motion detection operate on the same principle of nonlinear asymmetric interaction between channels from
two adjacent receptor regions. In the case described above asymmetric interaction has multiplicative I
nonlinearity resulting from shunting inhibition. -

An elementary motion detector can be constructed comprising of two subsystems each
unidirectionally connected, but in the opposite direction, and competing in an opponent fashion, a simple /
form of which is subtraction. Response of the detector to a bar stimulus is shown in Figure 6 and is seen
to be markedly different for motion is opposite directions. Response to drifting sinusoidal gratings and

I
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moving edges are also distinct for motion in opposite direction.7 The latter is interesting since there exist
four possibilities: two polarity of contrasts moving in two directions. It can be shown that the response of theI network is different in all four cases although ambiguous if direction is deduced only based on a thresholding
operation.

3.0 8

2.5 6

, 2.0 4

1.5 2

2v-llv 2v-1 1vS1.0. ..0v

0 8162432404856647280 0 8 162432404856647280
Cell Number Cell Number

a.) Multiplicative Network b.) Additive Network
Figure 5. Response of two feedforward networks to a staircase input pattern with steps of I volt. Network
(a) operates on multiplicative inhibition while (b) has additive inhibition.

(a) (b)

Figure 6. Response of the shunting motion detector to a bar pattern moving in opposite directions.

5.0 Conclusions

Hardware circuits described here are inspired by the basic membrane equation which suggests synaptic
conductance modulation as a mechanism for achieving shunting feedback and feedforward network
interaction. The circuits use the basic property of single field effect transistors which, in below pinch-off
operation, are voltage controlled conductances. A circuit comprising of feedback networks and
unidirectional synapses was shown to respond selectively to motion in opposite directions.The inherent fault
tolerance due to parallelism, and the analog operation allows these operation to be performed with few
devices and at high speeds.

Acknowledgemeut. This work was supported in part by the Engineering Foundation through Air Force Engineering Research
Initiation Grant RIB9115.

7 For results and analysis see V. ShrMsha and B. Nabet (1992) "Modeling of a shunting movement detector, "Proc. lASTED
InL Conf. on Control and Robotics, August 4-6, Vancouver, Canada.
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Oscillatory Neural Networks

on Multiple Limit-Cycle Self-Oscillators

6 July 1992

By Y. A. Saet

I. Introduction

5 The paper is aimed at investigating the qualitative dynamics of self-oscillators
with several limit cycles in relation to possible applications. We shall discuss
both the hardware device-like aspect of the dynamics in connection with neural
(broadly understood) networks and other quasi-biological objects, and also the
concept itself as related to statistical mechanics of non-conservative dynamical
systems and applied physics. Since the author (along with his collaborator) has
undertaken systematic efforts to actually design, build, and outline the potential
applications of multiple regimes electronic oscillators, the ensuing discussion will
not refer to the already well-understood aspects of the subject matter. On the

other hand, since the author is the only worker who has addressed the topic in any
pragmatic manner, I shall allow for myself a few remarks of a historical or
comparative nature. It was known from the days of Van der Pol and Andronov that a
self-exciting oscillator might have more than one stable periodical regime. At
that time, a possibility of this kind was viewed as an exotic event, chiefly due to
a very limited control over the shape of the current-voltage characteristic of the
electronic tube. For this latter reason, the only firmly established element of the
concept of multiplicity inherited from that period Ls the notion of a hard mode
excitation (two limit cycles but only one stable together with stable equilibrium).
The last thirty years witnessed a significant widening of interest in our topic
among other researchers. Among them are R. Landauer and his co-workers at IBM, who
have consistently emphasized (for a very long time) the applied role and significance
of various types of concrete dissipative physical systems with multiple states of
stationary motions (which could be equilibriums or periodical orbits). To the best
of this author's knowledge, since the mention of the possibility for the existence
of several limit cycles in the self-exciting ondulators in the early thirties, up
until 1984, there were no attempts to elaborate the topic or to obtain a real
physical object with distinguished levels of excitation. Only recently the
author and his coauthor have realized the self-exciting circuits with a number of
limit cycles in each degree of freedom, and shown that such a circuitry can be built
by the standard methods of production of the integrated components, including VLSI
technology. The next immediate question then arises: -From which point of view are
the author's above efforts justifiable, considering the expectations of their
possible application? I shall proceed with consolidating my position on the matter
after the following remarks. There is an ocean of remarkable results which have
been received during the last fifteen years in the areas of non-linear mechanics,
oscillations, and their endless ramifications in the applied sciences. Among these
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results virtually none was acquired exclusively by the means of the numerical 3
experiments (perhaps the iterations of the mapping on the unit interval are the
exception). In most of the cases, the discoverers of the new and interesting
phenomena used simulation devices for getting the first overall qualitative
pictures, which then were confirmed, complemented, and clarified by numerical
results. This situation is often true even when the authors are eventually able
to receive the formal proofs and theorems of an adequate character relative to the
nature of the original problem. Needless to say then, the role which simulating I
circuitry plays in the environment where analogies are used as the basic principals
for the construction and functioning of new devices is even larger. Among the
latter is the analog neural network created in the Munster Institute of Applied
Physics (FRG) in 1989 by Dr. H. Purwins' group. Their network is the closest to
what was proposed by the author in 1986. For this latter reason, I shall emphasize
here the significance of the work. The most basic demand on any neural network
is to have a significant number of discernable attractors.

...... The Lienard oscillator1

Iw'.' VO- IO

7 IOOII IOOI

__ _ _ _ _ __ IO

OII
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A plexus of coupled individual oscillators of Lienard type, each having several
stable limit cycles (equilibrium might or might not be among them) is definitely
a candidate for a dynamical system with a rich set of attractors. The network
built by Purwins' group is a hardware realization of the excitable media concept in
which the type of coupling between individual dissipative structural units defines
the operative properties of the network. Nonlinear current-voltage characteristics
synthesized by Purwins precluded the appearance of oscillatory regimes in
individual "neurons," but even with this severe constraint, his network has demon-
strated a magnificent abundance of experimentally observed distinctive attractors.
The latter fact is the most important lesson for the present effort. Details on
the network are in Purwins+. The present author's first (1986) multiple-limit
cycle self-oscillatory "neuron" design is presented above and is self-explanatory.
Apparently, it can serve as a potential generator of a set of attractors when
coupled into a network.

II. Excitable Media At Hand

In deriving dynamical equations for self-oscillators, the source of energy
(battery) is traditionally viewed only as a static, invariant parameter. The fact
that the power source can be finite and therefore suffers time-dependant change
of its basic characteristic while the self-oscillator is in its excitable state
(internal resistance, for example) has, to the best of this author's knowledge,
never entered the field of nonlinear oscillations or control theory. Meanwhile,
the mitochondria participating in complicated vibrational motions within the

+
Purwins, H., "Dissipative Pattern Formation in Experimental Analog Network,"
In H. Haken, ed., "Neural Computers" (Springer, 1990).
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m
eukaryotic cell is definitely undergoing changes in its energy capacity. The 5

fact is known and is particularly pronounced just before the beginning of mitosis,
but mitosis is absent in neural cells. This makes a strong motivation for a
phenomenological description of structural self-changes in excitable media. When
can these changes lead to an even remotely analogous phenomena in an oscillatory,
excited media? When can they not? Below.is presented a formal scheme which allows
us to pose that question in a framework of dissipative structures. Only structural
units of this scheme are fully investigated++. The network per se has not yet I
been built. The mathematical premise drastically depends on the types of coupling
between the oscillators and is open for flexible variations. What follows next
will be a formal interpretation of these so far vaguely defined, unspecified terms, m
questions, and intentions. We begin from the oscillator5'.yf(-k X(÷ X-tO
whose qualitative behaviour is fully understood and well investigated. For all
admissible values of parameters R; , A the oscillator is assumed to be a
dissipative dynamical system. Recall that dynamical systems are dissipative if

i(ij 1-4- UX~JL)E C)R)
for sufficiently large t 70 and arbitrary k(0) and x(O); R ,O is a fixed number.
Let '.9 be a finite number of stable limit cycles. In quasilinear frame-

works (su4•l• ) there exist F(XA)( such that there is only stable equilibrium
(0,0) atA -0; stable equilibriuz? and one stable limit cycle at Lt= and so
on, in the case of generic bifurcations (

where SE is a notation for stable equilibrium, and (SC)K means stable limit CY~ les
existing for A 4 L .( ). where 4, are bifurcation values of,- I
Consider S

u(t,x) and c(t,x) are unknown functions. This scheme includes all "inhibitor-
stimulator" pattern formation paradigms so far considered in one-dimensional
settings, but it contains the features which were never introduced before. In
this formulation a, , 9, R are left unspecified and that gives significant I
flexibility for variations in model building. Purwins' network corresponds to
a particular choice for the above functions. The lack of space precludes the
author from describing the qualitative dynamics of this continuum model in concrete
terms here. It will be done somewhere else through further publications. One I
thing, however, should be stressed at once. The change in values of A. causes
what was mentioned as structural change in the basic oscillatory unit. With A
(or C) undergoing transition through bifurcational value XI' changes the type of I
oscillatory unit, since it changes the number of levels of excitations available.

++Saet, Y.A., "Quasilinear and Relaxational Realms in Multiple Regimes Self-
oscillators," International Journal of Non-linear Mechanics, (Nov., 1991). m
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III. On Simulating Annealing Methodology

Physics of condensed matter generated a class of specific problems relating to
finding minima of functions of large numbers of independent variables. Thus the
ideology of statistical physics and mechanics was transferred to the fields of
optimization and algorithm design. As for the neural network, the simulated
annealing procedure recently became important in training and speciation of the
neural networks. The present author used the principle features of simulating
annealing in. a situation pertinent to limit-cycles of oscillators of the type which
was previously described as the structural unit of oscillatory networks. The first
experiments reported+++ showed clearly a possibility to discern all existing limit-
cycles at once. Which, in a sense, is equivalent to the parallel processing of a
number of localized problems. Here I shall demonstrate the spirit of this approach
in a manner which is equally applicable to limit-cycles or to equilibria. The
result presented here is new and allows for the simultaneous location of a large
number of extrema of smooth function with an arbitrary number of independent
variables. The latter problem is of the type to which many techniques used in
neural networks are now reduced. Let \JCx4 ., ... XW) be a smooth function
of N variables. Consider the following system of stochastic differential equations:

where o00O, T 70, andlL (t) are uncorrelated white noises of unit intensity. The
present author has proven the following statement. The microcanonical Gibbs
distribution Co is a normalized solution of •be s ationary 7okker-Plank
equation corresponding to the above system with H- (*.)• + V(x 1 , x2 ... xN), e being
the normalizing constant. Let T-. 0, then one can immediately see that the density
of probabilistic measure is unlimitedly growing at the point of absolute minimum.
In fact; the whole probabilistic measure will be concentrated in the neighborhood

of the minimum point. The above described preliminary experiments with limit-
cycles imply that there is a band of values T--P 0 in which one can see in
sequence not only the absolute minimum, but also most of the intermediate or local
minima of the function V. The experiments with minima, however, were not fulfilled.
In the case of "degeneration," there are several potential wells of equal depth.
The author has found the second order criteria for the rate of concentration of
probabilistic measure in the neighborhoods of these minima. The criteria
involve Gauss-Kronecker curvatures of N-surface in (N+l)-space: U-V(xI .... Nx) at
the minima and allow for observation of all of them at once in the process of
T-* 0, if the process is realized in hardware or numerical experiments.I

I

IP"Saet, Y.A., and G.L. Viviani, "The Stochastic Process of Transitions between Limit
Cycles for a Special Class of Self-Oscillators under Random Perturbations", IEEE
Transactions on Circuits and Systems (vol. CAS-34, No. 6, June 1987).
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ABSTRACT

The design and implementation of a space and time efficient, modular (extendable) and versatile Artificial Neural
Network (ANN) building block is presented. This effort combines the expertise of neural network, VLSI design,
and materials researchers. The resulting ACU module implements a 20-input, 20 output building block employing
analog and digital circuitry and takes advantage of InP technology strengths by using high speed digital multipliers
and low leakage devices for the analog current conversion. The current status of the effort and future research
directions are shown.

INTRODUCTION

Artificial Neural Networks (ANNs) offer alternatives to conventional solutions in a myriad of application areas.
This includes problems in pattern recognition, including speech and image processing [1]. A plethora of ANN
architectures exist, including: (i) the popular feedforward structure; (ii) recurrent structures typified by Hopfield
networks; and (iii) other structures such as Kohonen's self-organizing net and ARTI and ART2. A given
application may dictate preference of one structure over another.

Much of the current emphasis on ANN design and application centers around simulation of the networks. The next
phase of ANN technology is likely to concern the hardware implementation of ANN-based solutions. To this end,
research at Clemson University has emphasized the implementation of large-scale ANNs, where network size (in
terms of weights or neurons) becomes a considerable challenge to VLSI technology. An excellent summary is found
in [2-3]. The scaling of an ANN is especially significant in imaging applications, where the volume of image data
leads to large ANNs [4].

Rather than concentrate on a specific ANN architecture, the effort involved identification of the common
computational characteristics of layered and recurrent networks and the expansion or scaling of this computation
to networks of arbitrary size. The solution is strongly dependent on the ability to compute inner products and then
transfer these results to other units which do the same. Training of the neural units is assumed to occur off-chip.
Other topics considered in the design phase include: weight accuracy (quantization) [5], arithmetic accuracy, speed-
area tradeoffs, and analog vs. digital implementation. Some design issues am explored below.

DIGITAL VERSUS ANALOG APPROACH

An examination of the literature shows that analog circuits [6] were preferred in the initial attempts to implement
an ANN integrated circuit. More recent work [7-8] describes the use of digital circuits in this application. Both
approaches have their strengths and weaknesses [91 but, as ANN's are in an evolutionary phase, we believe that the
digital/analog hybrid approach will advance the ANN field compared to systems based on one technology alone.
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Hybrid technologies have been used by other researchers [10] and the approach used in this work extends this to S
capitalize on fundamental technology advances. In the long run, as the ANN field matures, the practical difficulties
associated with a technology (not the inherent advantages or disadvantages) may force the use of a particular 3
solution.

TECHNOLOGY RELATED ISSUES AND POSSIBLE SOLUTION

As discussed earlier, this hybrid technology approach has the potential to yield an ANN which is useful in large
scale applications. Digital multipliers based on conventional Si technology (CMOS, bipolar and Bi-CMOS) occupy
too large a chip area to allow large numbers to be placed on a chip [9]. Out of the various semiconductor transistors I
currently under consideration, the resonant tunneling transistor (RTT) offers the highest speed and minimum area
that can be achieved in any three-terminal switching device. Therefore, the limitation of Si technology can be
circumvented by using IiP based ultra high speed vertical resonant tunneling transistors in the design of a super-fast
and low area multiplier. Due to the higher saturation velocity and the coefficient of impact ionization at a higher
electric field, higher thermal conductivity, better surface passivation properties and superior radiation resistance
properties, InP transistors have exhibited superior performance over their GaAs counterparts [111. I

In order to take advantage of a number of desirable features of Si substrates (availability in large area, high thermal
conductivity compared to III-V semiconductor materials, higher mechanical strength, and low-cost) we propose touse an InP/buffer layer/Si substrate in the design of the digital I/O blocks, the multiplier and the summation I
circuitry. The analog (sigmoid) block with a variable shape will use conventional silicon circuitry.

ACU MODULES n

An ACU module is shown in Figure 1. Currently, the ACU design provides a 20 input to 20 output neural mapping
capability. In order to have a useful building block, connections to another layer and layer expandability are I
necessary. Note that the computation of each unit's net activation has been separated from the activation - output
mapping (i.e., 'squashing'). This allows: (i) selection of different families of squashing functions, but more
importantly, (ii) modular expansion of ACUs to large-scale designs.

r-ACIIVAIION-i r-SQUASHING- 3
b (BIAS)

ACU

w (WEIGHTS) m

Figure 1. Overall ACU-element Based Structure

ACU DESCRIPTION AND SYSTEM PERFORMANCE I
A sketch of the ACU layout and system block diagram are shown in Figures 2 and 3. Each ACU has 20 inputs
and the chip architecture was designed to reduce interconnection busses and hence chip area. The estimated area
for each multiplier is 0.1 mm 2 and the minimum time delay is 100 ps. Using a multiplier per input increases the
parallelism and redundancy in the system but increases the chip area. Reduction in chip area is achieved by using 5
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analog summing and squashing circuitry. The ACU design is complicated by the introduction of InP technology,
but the estimated gains in performance and traditional areas of compromise are expected to outweigh the increase
in fabrication complexity [4].

Bus

I NPUMO1U T PUTS

AU AU

MUIX MIJX

t.or Hos I

..L .1 .i.......

Figure 2. System Block Diagram

WEIGHTS

1 ................................ , w
WIOW2

02

INPUTS 2I

FUNCTION CONTROL
Figure 3. ACU Chip

Weight accuracy is 8 bit and multiplexing of the 400 unit weights is necessary to reduce the package pin count.
Host computers are used for loading weights and inputs on separate busses. This provides the ability to alter
weights dynamically. System performance is improved by having calculations proceed during the loading of the
weights. The analog variable shape (sigmoid) function improves the accuracy of the threshold function and at high
current levels, noise is not expected to be a problem.
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The performance will eventually become I/O bound as the number of ACUs increases to cope with increasing inputs
and weights in the expandability mode. Speed will be limited by the ability of the host machines to service the i
ACUs rather than the speed of the InP based ACU. The chip layout design is pad limited and the ACU is expected
to occupy an area of 8 x 10 mm2. 3

EXPANSION OF THE ACU MODULE

Expansion of ACU modules for large scale problems is based upon examining the input-net activation computation I
of a q-input, q-output' unit:

W I = ( I)
1W21 W .- 2

Any decomposition of (1) yields a candidate architecture for ACU implementation, however, some decompositions 3
are preferable. For example, one grouping of the computation in (1) yields:

-2. W22. h12 + [W2 [1 I.- = Wd[J + ad -(2)

Notice in the Wd-based activation computation, only units involving • connect to o, and only units involving .•connect to o2. Similarly, in the Wa-based activation computation, units involving 2 only connect to o, and those I
involving i, connect to a. Thus, a decomposible, local intemconnect strategy is possible.

Finally, from (2), the overall activation output is found from I
a + dIad (3)

where the 'diagonal' L(d) and 'anti-diagonal' (p.•) outputs correspond to the respective Wd and W.d products in (2).
This process is shown in Figure 4. 3

SUMMARY/CONCLUSIONS

The ACU architecture and InP technology offers unique solutions to the well known bounds of artificial neural I
network chips which result in tradeoffs between interconnects, speed, chip area, and number of pins. The solution
provides the expandability and flexibility necessary to achieve the large networks which are needed for many
interesting applications. I

I

'MThe number of inputs does not necessarily equal the number of outputs. We simply use I
this case for illustration.
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I (a) Decoupled ACUs
40VV 140 o

I (b) Composite Net Activation

3 Figure 4. ACU Expansion
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Abstract
In this paper we present a new update rule for self organizing neural networks that increases learning stability. This rule, based on
update normalization, prevents overshoot of the update. Also, we present a novel configuration approach which makes the network
adaptable to new patterns with minimal delays.

Introduction
Autonomous mobile robots rely on sensors for guidance information to locate and identify landmarks when traversing their

environments. Common examples of landmarks ae mile-markers and street signs. Mile markers provide information about
the global position of the robot while street signs provide local information. Some of the problems associated with landmark
recognition are that the size of the object is subject to change depending upon the imaging distance. Also, if the viewing angle is
not head-on, the aspect ratio may also change. In a dynamic environment the number and types of landmarks entering the scene is
constantly changing and the recognition algorithm must be able to identify these new landmarks.

In this regard, visual sensors, such as intensity imagescan convey knore scene information than most other sensors. Hence,
vision based sensing is the information collecting strategy of choice for most mobile robot guidance applications. Since the robot
must make quick decisions based on the information contained in the landmarks, the recognition algorithm must be able to satisfy
the recognition speed requirements for smooth motion. Also, the algorithm must be able to smoothly integrate into its object
database for any variants of known objects or new objects that may appear in the scene that may be of use for navigation. In this
paper, we present a Kohonen network architecture to meet these consaimts.

First we present a brief list of current landmark recognition and mobile robot guidance techniques. Next, we justify the choice
of the neural network model. We also present our results with these model and lastly, our conclusions on the effectiveness of this
strategy.

Current Landmark Recognition Strategies
The objective of the landmark recogntion algorithm is to extract landmarks as quickly as possible. The algorithm should be

able to overcome scale changes in the landmarks which may occur due to changing imaging distances. 7b overome this problem,
landmarks are often designed to stand out from the rest of the image in terms of their color or shape. In some instances, the
landmark is placed on a retro-reflective surface which is ifluminated periodically by a strobe light from the vision system'. Due to

IT. Takada, A. Kao, T. Suaui and M. Hosoi. Autanawed vehicle guidance using spouna& In ICRA. pages 1349-1353,1986
W.D. Haoa Sbe, IL Dickkma, J.W. I. and R.A. Boblider. Advances in guidance systans for indusuial automiaed guided vehicles. In SPIE Mobile

Rabou M, val. 1007, pages 288-297, 1988.
It. Rottingg LAndnak tuacking aid naamnuc lomb 3 of vehides for maerial handling. In Matenal Handling focus, 1988
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the retro-reflective background and the intense beam of the strobe light, only the landmark is visible in the image. The extraction 3
process is then simply reduced to locating the one bright region in the image. This approach requires that all the landmarks be
identical. Guidance is provided by keeping a count of the landmarks detected. Thus, if any landmark is missed, the guidance
strategy fails. Also, all the other information in the scene cannot be captured within the same image. Other limitations of this I
approach are obvious.

Landmark detection without the aid of special lighting conditions has been studied by Fukui2 . The algorithm scans every
column of the thresholded intensity image to construct a probabilistic model of the dark and bright patterns which is used to
predict the landmark. Such a task presents considerable computational burden especially if the image contains a large number of
objects, only a few of which are relevant for the guidance.

Another approach has been to use a laser beam mounted on the robot to scan predetermined locations for bar codes which can
be interpreted for location information3 . In some other instances, laser transceivers on the robot received the beam bounced off
of comer cubes placed along the edge of the path to correct the trajectory of the robot4. In this approach, as in the retro-reflective
approach, there is no provision for error-correction. While the path of the robot can be maintained accurately, it is not possible to
predict the exact location of the robot with the guidance system alone.

A major disadvantage of these image processing oriented landmark detection algorithms is that each requires substantial pro-
cessing of the image before any information regarding the landmark can be generated. This processing that is typically in the form
of clustering, segmentation and identification has a computation overhead that may be difficult to achieve in mobile robot appli-
cations where speed of recognition is essential. For example, locating a street sign may be accomplished with small investments I
of computation; however, interpreting the meaning of the sign may require a lot of effort.

On the other hand, neural networks generally have a lower computation requirement once they are trained up. Once the possible
landmark candidate has been located, the identification can be performed within the time it takes to percolate the landmark sub-
image through the network. It is true that the training of neural networks requires considerable computation which may be of the
same order as that required by the image processing oriented techniques. However, a more pertinent criterion is the time required
to identify a given pattern; in this regard, the neural network can be much faster. Also, the basic approach does not change even if
the patterns to be detected change.

There are a number of neural network models that have been used for pattern recognition applications. A broad classification of
such models can be represented as Back propagations, Adaptive Resonance Theory (ART)6 and Self Organization7. Of these, back
propagation models are useful for applications where severe distortion in the input maybe expected, such as hand written character I
applications. Backpropagation models are unable to recognize patterns from any class that was not represented in the training set
without retraining the network. ART deals with an "oscillatory" weights model in which the network adjusts the weights for every
input till a known "state" is reached or the the pattern is learned as a new class. Kohonen models are similar to vector quantization
where the space of input patterns is scattered with neurons which are iteratively adjusted till every class has at least one neuron.
For the mobile robot navigation application studied in this paper, we need a network that has the fastest integration time for new
patterns. Also, the training time and the weight storage overhead must be low. In the next section we describe a Kohonen model
with new update rules that incorporate learning stability. We present learning curves that compare the performance of our method I
with the standard Kohonen learning when the networks were trained with intensity images of actual street signs.

Self Organizing Neural Networks
The training algorithm in self organization attempts to find an optimal cover of the input space by the neurons. Training is

concluded when the neuron assigned to each class is at an average minimum distance to all presented patterns of that class. This
presents the one major difficulty with these types of networks: convergence is not guaranteed.
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Unlike supervised learning strategies where convergence can be proved if a small learning rate and a small starting set of

weights is used, it is difficult to predict the outcome of the training exercise with Kohonen networks. lb see this, we can visualize
each neuron as the center of an N-dimensional hypersphere that contains all examples of the particular class. Initially the neurons
start out at random positions in the input space and during training, the "winning" neuron for each class is slowly moved to the
center of the covering sphere. Now, if the variance of each class is high, then as the sphere moves to cover some members of theI class, some others will be left ouL Also, if the inter-class variance is too low, the spheres may intersect. Either of these cases is
pathological and leads to oscillations and instability. Kohonen suggested that by normalizing all vectors, inputs and neurons, to
unit length, this problem could be avoided. In this case, all the vectors that belong to the same class lie within a circle, the center of
which would be the optimal location of the neuron that repesents the class. This may lead to the conclusion that the best training
strategy would be one that computes the center of this circle from the given data points. However, this is computationally intensive
task especially with vectors with high dimensions. Also, there are geometrical constraints; for example, the data might be from
just one part of the actual circle; a circle is uniquely defined by 3 points and with raw data it is hard to decide which three of the
data could be used.

A simpler solution to the optimal neuron location problem is to start with random locations of the neurons that may be itera-
tively adapted to the input data so that after a small number of iterations, the neurons attain some pre-defined degree of optimality
such as when all the training set, as well as all the test set, patterns are correctly classified. In the next section we present the
learning rules for the Kohonen self-organizing map that overcome some of the disadvantages of the network.

Learning Rules for Self Organizing Networks
Unlike backpropagation, the representative neurons for each class are not predetermined. Also, each neuron is represented by

a weight vector of the same dimension, M, as the input data. For every pattem presented to the set of neurons, the closest neuron
is located, closeness being measured in terms of Euclidean distance. For this reason, both the input patterns and the weight vectorsI are normalized to unit length. To overcome the problem of oscillations in Kohonen networks we have developed the following
learning rules based on update normalization. The closest neuron is updated as:

wii (n) - w0j (n - 1) + a(n)lx - wijs -I J 0 "1..I - 1

where, wij is the jth element of the winning neuron i, a is the learning rate and xj is the corresponding element in the input vector.
Also, a small, monotonically decreasing, neighborhood of neurons around the winning neuron are also updated with respect to

I the input. The philosophy behind this approach being that neurons that are close together typically belong to classes that are also
close together. We have found that a good choice for initial value of the neighborhood function is the square root of the maximum
distance between any pair of neurons at the begining of the first iteration. This neighborhood update moves the neighborhoodI neurons in the general direction of their classes, thereby increasing convergence rates. However, this update is weighted by the
distance between the input and the neuron. That is, if neuron k is not the winning neuron,

if Ilw& -wII < Ne

U wS,(n) = w.j(n - 1) + v' (n)(x ji -wil- ) - 0,..., M - 1, and c' <a (2)Ilx - w,.ll + I
i The distance weighting ensures that the neighborhood neurons do not overcome the winning neuron. Also, the distance weighting

has an accelerating effect such that as the winning neuron gets closer to the class it is expected to represent, the faster it moves
toward the class. The factor of I in the denominator is used in case the distance is zero. The neighborhood distance is reduced
over time so that eventually the neighborhood encloses only one neuron. This occurs when the neuron has moved into the covering

i circle. Ideally training is terminated when the neuron is at the center of the covering circle.
One of the shortcomings of self organizing neural networks is that if the variance within the input data set is low, one neuron

may move much closer to the data than any of the other neurons. Then the network will consistently have the same output for allI the inputs, i.e., the network has failed to learn the patterns. (On the other hand, backpropagation models will learn the patterns
though it may take a very long time). In this paper we present a novel approach to tackle this problem. We flood the weight space
with an excess of neurons, generally a multiple of the number of classes. This causes each neuron to concentrate on a very small
part of the input space and prevents network saturation of the type discussed above. Also, these excess of neurons allow us the
freedom of reassigning them to any new classes that may appear at a later time.

Further, in marked difference to the backpropagation training technique, we present each class sequentially so that neurons
that are activated toward a class move far away from all other classes. This form of input presentation is not possible in backpropI since it will cause the network to learn only this one pattern. We trained the self organizing model with images taken of street signs
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Class Threshold New Classes
Light No U No Left Ped. Rail Swp Yield
Ahead Turn Turn Cross Cross _

DoNot 0 .-.. 1.4

Enter 0- - 1.436
No Right 0.2132 1308 1.132 - 1.254 -

Turn 0.134 - - 7 -
Stop Ahead 0.9119 1.099 - - 1.086

Tuble 1: Activation thresholds with 18 neurons in the weight space

such as Swp, No Right Turn, etc. The street signs were extracted using a segmentation routine. The minimum size of the sign
was 20x20 pixels where the sign was just visible to the human eye. The maximum size used was 60x60 pixels where the camera 3
was nearly alongside of the sign. Tb test the reconfigureability of the network we train the network with only 3 street signs with
different numbers of neurons: 15, 18, 21, 24, 27 and 30. The ability of the network to learn the new signs is an important factor
in the use of this model for mobile robot navigation. We use a Kohonen model in which the starting neurons are all initialized to
small values and are normalized to unit length.

In each ca we plot the average change in the distance between the input and the closest neuron. We also plot the change in
the winning neuron due to the update. We expect both curves to be decreasing functions. One method to check for termination of
training would be to check for zero change in the updated neurons. This means that further learning will fail to change the neuron
any more. This is computationally expensive and also may overtrain the network and decrease its generalization capability. Hence,
we continue to use the previous errot metric: terminate training when all the test data and training data are recognized successfully.
We present the learning curves for the first 100 iterations for each case in Figures(l,2,3). We notice that in the case of 15 input I
neurons the distance between the input and the winner is still quite high at the end of 100 iterations. Also, the classification error
(the average number of inputs misclassified) is also high. Hence, we can conclude dt 15 neurons ae not sufficient to represent
this input set with the desired errx bounds.

From these figures it is also evident that for this application, 6 times as many neurons as there are classes are sufficient to learn
the patterns. It is also evident thatas the number of neurons is increased there is no significant increase in comvergence rates. Also,
ther does not seem to be any greater improvement in the position of the winning neurons with respect to the class. The advantage
of using mor neurons is that provides the network greater flexibility to learn more new patterns.

The neurons that are not associated with any training set class are activated when now classes are to be introduced. At the
termination of the training, we compute the maximum activation distance for each class. That is, for each neuron assigned to a
class, we compute the distance to all the (training and test) members of this class. The maximum distance to the input for which the
neuron is still the winner is the activation distance of the neuron. When a new pattern is presented, its distance to all the neurons
is computed and the pattern is assigned to the closest class. However, if this distance is greater than the activation distance for
that neuron, the new pattern is determined to belong to a new class. Tben, the closest neuron that is not already pre-assigned to
any class is updated to the position of the new pattern. Thus a new class can be incorporated into the weight space without any U
retraining overhead.

In Table 1, we show the activation thresholds of the neurons in each class computed from the training and test data. We present
the results for the 18 neurons case. The table also shows the distance between new patterns and each existing class. We can see that

the distance to the new pattern is greater than the threshold for the neuron. This means the neurons have sufficient discriminating
ability. The closest of the remaining unassigned neurons is then moved to the location of the new input class. (A "-" in any cell of
the table below indicates that the neuron in that row was not the closest to the inpuL)

Conclusims
In this paper, we have discussed some of the issues involved in landmark detection. We have presented a possible solution to

the problem that can be dynamically reconfigured to incorporate new classes. We have also presented new update rules that can
be used to increase learing efficiency. Finally, we have described some of the results obtained with these networks.

I
I
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ABSTRACT

A npidly emerging a in the theory of automatic control involves the related concepts of adaptation and learning. Ac-
cording to one basic pmadigm, an adaptive or leaning controller can be viewed absractly as a variable mapping, from desire an
measured plait outputs to coresponding actuation signals, with adepton and leaning as the processes used to modify this map-
ping so as to nmprm fuare dlosed-loop system pedor•ance. More generally, adaptation and learning am perceived to be mecha-
nisms for intelligent resPnise in a system. A rudimentary investigation of this paradigm suggests that, in the context of flight
control, many potential benefits may arise fomn a combination of adaptive and learning augmentation. These potential benefits
include: facilitatio, of the control system design, develomewnI, and atwing process; compesatiom for insufficient or inaccmurate a
prion design information; imunpvement of operational efficiency, and enhancement of dosed-loop system performance, In this
brief poper, a hybrid adaptive / learning control methodology based on this perspective is motivated and described. The distin-
guishing characteristics of this approach and the benefits associaed with its use are discussed. An example of a hybrid adaptive I
learning control system applied to a nonlinear longitudinal aircraft model is also presented.

1 INTRODUCTION

An important, perhaps even defining, attribue of an intelligent control system is its ability to improve its performance in
the futare, based on past experiences with its environment. The concepts of adaptation and learning are often used to describe the
processes by which this is achieved, In this paper we discuss control systems that are explicitly designed to incorporate and ex-
ploit both behaviors. Moreover, the use of connectionist systems as a re-esentational framework is motivated and described in
this context.

In a fundamental sense, the control design problem is to find an appropriate functional mapping, from desired and measured
plant outputs to control actions, that will produce satisfactory behavior in the closed-loop system. In other words, the problem is
to develop or evolve a function (a control law) that achieves certain performance objectives when applied to the open-loop system.
The desired control law may be nonlinear and/or dynamic. In turn, the solution to this problem may naturally involve the synthe-
sis of other mappings; e.g., from scheduling variables to the parameters of a local controller or local plant model, or from mea-
stnd plant ouqKtu to estimated plant smams. The development of accurate mappings necessarily requires knowledge of the dynam-
ical behavior of the actual plant. Such knowledge is often unavailable or expensive to obtain a priori. Thus, an automatic
mechainim that could synthesize and maintain these mappings on-line would be an advantageous component of an advanced con-
trol sysem. The feedback required for on-line operation (i.e., the information needed to correcdy generate the desired mapping)
could be obtained tdough direct ieractions with te dplt (and its environment). In this way, adapta• t and learning can be used
to compente for limited or inaccume a pnori design knowledge by exploiting informatim that is gained experientially. The ad-
vaWes of adaptive and leatning conrol systems derive mainly fromn their ability to accommodate (in varying degrees) poorly
modeled, nonlinear, mad time-varying dynamical behavior during on-line opemion.
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2 DISCUSSION I

Adaptation and learning we complementary behaviors that can be used simultaneously (for purposes of automatic control) U
in a synerisric fashion (Baker & Farrell (1990)). The differences between the processes of adaptation and learning are imnpontan,
but subtle. To some degree this is unavoidable, since there is no definitive dividing line. If. however, one considers the differ-
ences between represenaave adaptive and learning control systems, then several distinguishing qualities emerge. For example,
learning control systems make extensive use of memory; adaptive control systems also rely on memory for their operation, but to
a significantly lesser degree. A control system tha treats every distinct operating situation as a novel one is limited to adaptive t m

operation, whereas a system that corelates past experiences with past situations, and that can recall and exploit those past expen-
ences, is capable of earning. The key differences, which are essentially a matter of degree, emphasis, and intended purpose, are U
discussed further in (Baker & Farrell (1992)).

In general, adaptation can be used to accommodate (slowly) time-varying dynamics and novel situations (e.g., those which
have never before been experienced), but may be inefficient for problems involving significant unmodeled nonlinearity. Learning,
in contrast, can be used to accommodate unmodeled nonlinear behavior, but may net be applicable to applications involving time- 3
varying dynamics. In situations where the unmodeled dynamics are nonlinear, but time-invariant, the anticipatory character of -
learning systems allows for increased efficiency and improved performance to be achieved, relaive to purely adaptive systems (due
to the local nature and inherent lag in the adaptation process). In light of this, we are led to suggest that an intelligent control i
system might actually be comprised of three subsystems: an a priori compensator (which provides nominal performance), an adap-
tive component, and a learning component. Finally, as is discussed below, the successful employment of adaptation and learning
for the purposes of automatic control implies that one has a feasible and effective means for their realization.. .c ont sygtem

Connectionist systems, including wha are often called "artificial neural networks," have been suggested by many to be
suitable structures for the implementation of adaptive and learning contiol systems. Common examples of connectionist systems
include feedforward multilayer sigmoidal (Rumelhart, et al. (1986)) and radial bass function (Poggio & Girosi (1990)) networks.
The popularity of such systems arises, in part, because they am amenable to simple gradient parmneter adjustment algoridums, and
can be implemented in parallel computational hardware. Perhaps more importanly, however, it is known that several classes of
connectionist systems have the wmversal approximanton property. Ths property implie hat any continuous function can be ap- 3
proximated to a given degree of accuracy by a sufficiently large network (Fumahashi (1989). Homik, et al. (1989)). The universal
approximation pperty is a key element of any application of connectios systems to problems in automatic control.

A cortnectionis system can be implemented in three distinct forms: as a suaic feedforward, dynamic feedforward, or recur'-rent mapping. Static feedforward networks ae used to realize memoryless nonlinear mappings. The structure of such networks

can always be capxured in an acyclic digraplL Dynamic feedforward networks ae used to realize dynamical mappings having afi-
nite impulse response, and can be represented using an acyclic digraph, with integration or delay operators at the output of all
nodes. More general dynamical mappings, having an ignite impulse response. can be realized using recurrent networks; in this 3
case, the network can always be represerned using a cyclic digraph, with integration or delay operators at the output of all nodes.
Note that any recurrent network representing a continuous or discrete-time dynamic mapping can be expressed as an equivalent dy-
amcal system comprised of two static feedforward mappings separated by the appropriate operator. This fact suggests that sutn-

dad tlecliques for adjusting sat feedforward networks can be incorporated into algorihnms suitable for recurrent networks. I
To help clarify the discussion, assume that a connectionist system is to be used to describe the static mapping y = g(u;p),

where p is a vector of adjstab parameters. An algorithm is needed that will generate an appropriate p so as to achieve some
desired objective. When the mathermical smutre (in this case, the function g) used to implement the mapping is continuously
differentiable and the objective function J can be treated as a "cost" to be mninimized, then gradient-based methods can be used. In
the special cme where the adjusmble parameters p appear linearly in the gradient vecVt/p, the optimization can be treated us-
ing established linear methods (e.g., least squares). More generally, nonlinear optimization methods must be used.

In the event of a dynamic mapping y,,. = g(x1,.u;p), where x is the internal state of the mapping, the problem can al-
waysbedecomposedintotwosubproblemsbyrepresentingthe mapping instate-spuce form: x,., = r(x..uA;p/), y. =b(x,;p.)-
In this case, the two subpmblems; become that of estimating the parameters of the static mappings f and h, and that of estimat-
ing the sate x of the dynamical mapping (Livsone, et a. (1992)). AnMother approach to parameter adaptation in a recurrent net- 3
work is to convert the recurrent mapping into an approximately equivalent dynamic feedforward mapping (i.e., by converting an
infinite impulse response reprem tation into one that has a finite impulse response) - this technique is closely related to the
"bckproa thg trough tine" strategy (Rumelhart, et al. (1986)). 1

A number of technical issues must be addressed in any specific applicatimon of connectionist systems to adaptive and learn-
ing control. These issues include: controllability and observability; the effects of noise, disturbances, model-order errors, and other
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uncertainties; convergence of connectionist network parameters, sufficiency of excitation, and nonstationarity; computational re-
quirements, time-delays, and the effects of finite precision arithmetic. Most of these issues also arise in the application of tradi-
ional adaptive control systems.

Another design consideration involves the use of passive vs. active adaption and learning strategies. Passive schemes am
limited to whatever information happens to be available during the normal course of operation of the closed-loop system. In con-I traist in an active stregy, the control system not only attempts to drive the outputs of the plant along a desired trajectory, but
also explicitly seeks to improve the accuracy of the mapping(s) maintained by the control system. This is achieved by introduc-
ing "probing" signals that direct the plant into regions of its state-space where insufficient adaptation and/or learning has occurred.

An important factor to consider when employing connectionist systems for automatic control is the environment in which
they will be used. Thus, for example, the quantity, quality, and content of the information that is likely to be available to the
connectionist system during its operation critically impact its performance, and should be accounted for in the selection of a suit-
able approach. In our previous work, we have developed special-purpose connectionist systems that overcome some importantI limitations of popular connectionist architectures, when used in the context of automatic control (Baker & Farrell (1992)).

One nonlinear technique that is suitable for static mappings is the gradient algorithm: Ap = -W(CV//oi) T, where W is tI symmetric positive definite matrix that determines the "learning rate." More insight can be gained into the gradient learning algo-
rithm through an application of the chain rule, which yields: Ap = -W(dy/610) (af/*,)T. The first partial derivative dy/14 is
the Jacobian of the outputs of the mapping with respect to the adjustable parameters, and is a known quantity. The second partial
derivative all/y is the gradient of the objective function with respect to the mapping outputs, and may or may not be known ex-

I actly depending on the application.
A typical cost function is the quadratic form defined as the sum, over a finite set (or batch) of evaluation points, of the

squared output error norms. If the goal is to have adaptation occur on-line, then an objective function of this form cannot readilyI be used. The main problem is that the set of possible inputs to the mapping will n= consist of a finite set of discrete points.
Consequently, it will not be easy to select a finite set of representative evaluation points, nor will it be feasible to guarantee that
any or all of them are ever visited. Fortunately, various alternative objective functions that approximate this objective functionEwe feasible and ame often used in practice. By far, the most common objective function used for on-line learning in control appli-
cations is the point-wise function given by the square of the current output eor norm.

This can be considered as a special case of the batch mode of operation, where the evaluation set contains a single
(potentially different) point at each sampling instant. Learning algorithms that seek to minimize point-wise objective functionsI in lieu of objective functions defined over a continuum are referred to as incremental learning algorithms; they are related to a
broad class of stochastic approximation methods. Incremental gradient learning algorithms operate by approximating the actual
balch gradient with an instantaneous estimate based on the current evaluation point. The use of point-wise objective functionsI to approximate batch objective functions (i.e., those in which the evaluation set contains more than one point) will generally not
be successful unless special attention is given to the distribution of the evaluation points, the form of the learning algorithm, and
the structure of the network.

One well-known and widely used incremental gradient algorithm is the least-mean-square (LMS) algorithm (Widrow & HoffS (1960), Widrow, et al. (1976)). The LMS parameter update law is Ap = -a(aI/o4) T, where the cost j is based on the point-
wise squared earo function and a is a scalar learning rate coefficient. Given certain assumptions (e.g., linearity, stationarity, er-
godicity, Gaussian random variables, etc.), LMS can be shown to be convergent in the mean and mean-square, relative to the ob-U jective function that includes all evaluation points. Although the theory supporting the convergence of the LMS algorithm only
applies to the special case of a linear network (among other assumptions), the basic strategy underlying LMS has been used to
formulate a simple learning algorithm for nonlinear networks. This approach is the standard incremental gradient algorithm
presently used by most practitioners for on-line parameter adjustment; it is equivalent to incremental "error back-propagation."

Special constraints are placed on a connectionist system whenever learning is to occur on-line, during closed-loop opera-
tion; these constraints can impact the network architecture, parameter update algorithms, and training process. Assuming a pas-S gsive update strategy is being employed, the experiential information (training examples) cannot be selected freely, since the plant
sone (and outputs) are constrained by the system dynamics, and the desired plant outputs are constrained by the specifications of
the control problem. Under these conditions, the system may remain in small regions of its state-space for extended periods ofS time (e.g., neam sedpoints). In aun, this implies that the measurements used for incremental learning will remain in small regions
of the input domain of the mapping being synthesized. Such "stasis" can cause undesirable side-effects in situations where param-
eter adjustments (based on incremental learning algorithms) have a non-local effect on the mapping maintained by the learning
system. For example, if a parameter that has a non-local effect on the mapping is repeatedly adjusted to correct the mapping in a
particular region of the input domain, this may cause the mapping in other regions to deteriorate and, thus, can effectively "erase"
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learning that has previously taken place. Such undesirable behavior arises because the parameter adjustments dictated by an incre- I
mental learning algorithm are made on the basis of a single evaluation point, withosw regard to the remainder of the mapping.
The idiosyncrasies associated with passive incremental learning under closed-loop control have precipitated the development and I
analysis of spatially localized learning systems (Baker & Farrell (1990,1992). Millington (1991)). U

3 EXAMPLE: PITCH RATE CONTROL

Modern flight control systems are used to provide closed-loop system stability and enhanced performance over a wide range 3
of operating conditions. This can be difficult to achieve due to a number of circumstances including the complexity of both the
vehicle and the performance objectives, and due to the presence of uncetainty in the design process. From a design standpoint, air
vehicles can exhibit nonlinear and time-varying behavior (due to aerodynamic effects and fuel use), unmodeled dynamics (due toI
unmodeled aeroelastic effects), high dimensionality, multiple inputs and outputs, and the possibility of actuator, sensor, or other U
component failures. In this setting, there are potentially many applications of adaptive and learning control.

In the simple example presented here, the problem is to provide a command augmentation system (CAS) that will improve m
the longitudinal handling qualities (e.g., pointing capabilities) of a representative high performance aircraft. It is assumed that the 3
available a priori model information is so limited that it is impossible or impractical to design in advance a control system that
has fixed properties and also performs sufficiently well (thus, a fixed robust design cannot be used). Furthermore, it is also as-
sumed that a model describing the desired closed-loop system behavior exists, and that this level of performne can be realizedfi
by the actual aircraft. Under these conditions, the objective is simply to track the output of the reference performance model. A
more detailed description of a related experiment can be found in (Nistler (1992)).

The aircraft simulation used here is derived from a six-degree-of-freedom (6-DOF) F-15 "like" vehicle model, incorporating
nonlinear aerodynamic effects (based on empirically derived tabular data), nonlinear engine dynamics, and nonlinear actuator dy-
namics (including rate and position limits). A more detailed description of the basic simulation can be found in (Brumbaugh *
(1990)). For the results reported below, the longitudinal and lateral / dirkcial dynamics were decoupled, and a 3-DOF longitudi-
nal vehicle model exuarted. Neither sensor noise nor wind gust disturbances were modeled.

The performance model used for this experiment is essentially a gain scheduled fourth-order linearized model that describes
the classical longitudinal dynamics of an aircraft. The model parameters are scheduled on altitude and Mach number over a repre-
sentative flight envelope, and have been designed to meet basic military specifications for pilot handling qualities (i.e., MRL-F-
8785C) at every trim condition within this envelope. Thus, for instance, the eigenvalues associated with the short-period and
phugiod modes of the linearized model always satisfy the MIL-F-8785C requirements for Class IV (high performance) aircraft in
Category A (maneuvering) flighL This performance model is designed to provide a specification of the desired transient response
of an aircraft to pilot stick input commands. Further information regarding this particular model can be found in (Calvert (1991)).

Since only a single control (symmetric horizontal stabilator) was available in our 3-DOF simulation, we had essentially
two choices: (i) to track a single output of the reference performance model or (ii) to minimize the norm of some multivariable3
tracking error. We choose to track a single output, namely the pitch rate of the performance model. Implicit in this approach isW
the assumption that accurate pitch rate tracking will yield acceptable responses in the other vehicle outputs. The actual feasibility
of such an approach depends on the degree to which the reference pitch rate trajectory is realizable as well as the similarity between I
the dynamics of the performance model and the vehicle to be controlled.

All CAS controller designs were based on the following a priori model information only: a single fourth-order linear
model derived by linearizing the nonlinear 3-DOF model at a trim condition of 20,000 ft and a Mach of number 0.65 (roughly the *
middle of the flight envelope). Thus, there were both unmodeled nonlinew effects and additional umnodeled dynamics (due to sim-
Wlated actuator and engine dynamics). A model-based linear compensator was designed following a procedure similar to that de-
scribed in (Anderson & Schmidt (1991)). An adaptve compensator was developed by combining and extending ideas presented in
(Youcef-Toumi & Ito (1990) and (Anderson & Schmidt (1991)). Finally, a hybrid adaptive / learning control system was devel- 3
oped that combined the sone adaptive compensator with a connectionist learning system (Baker & Millington (1991)).

A linear-Caussian network (Baker & Farrell (1992)) employing 45 nodes and a spatially localized incremental gradient algo-
rithm was used to capture the unmodeled nonlinear effects in the observed behavior of the vehicle. The hybrid controller wasE
trained on 3,000 transient responses originating at randomly selected trim conditions throughout the flight envelope (roughly from 3
sea-level to 40,000 ft. and Mach number 0.3 to 0.9). During trving, both adaptation and learning were active in the hybrid sys-
tem. Each transient response was generated by applying one of four predetermined stick commands to both the performance model
and the CAS coupled to the nonlinear 3-DOF aircraft model. The four longitudinal stick inputs used were: a ramp, doublet, pulse, I
and sinusoid-sweep. All responses were made from an initial trim condition, with the throtte held constant at its trim value.

I
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Desired ( rence performance) pitch rate response to a stick input doublet, and actual pitch rat tracking e ror, stabilator,
and load factor repne wre shown in Fig. I for each controller (linear, adaptive, and hybrid). Initially. the aircraft is in trim a,

an altitude of 35,000 ft and a Mach number of 0.68 (corresponding to a relatively low dynamic pressure condition). Note: this
flight condition is different from the one where the a priori design model linearization was performed; thus, the design model does
am even accurately represent the linearized behavior of the vehicle. These plots demonstrate a clear progression of improved track-
ing performance from the linear through die adaptive to the hybrid controller (the linear controller failed around 10 sec). The stick
input used to generate these responses is shown in Fig. 2. A representative "slice" of the multidimensional mapping learned by
the network is given in Fig. 3.

4 SUMMARY

Potential benefits associated with adaptive and learning control include: (i) facilitation of the control system design, devel-
opment, and tuning process, (ii) compensation for insufficient or inaccurate a priori design information, (iii) improvement of op-
erational efficiency, and (iv) enhancement of closed-loop system performance. Presently, sufficient scientific and engineering sub-
stantiation of these potential benefits is lacking. Nevertheless, on the strength of the preliminary results already obtained, as well
as the basic theory that has been developed, further examination of the fundamental issues underlying adaptation and learning and
their application to automatic flight control is warranted. In particular, new research and development efforts aimed at demonstrat-
ing key aspects of learning augmented control and estimation schemes are needed.
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Abstract

A new foveated vision system is presented for target detection, classification, and tracking. This
vision system measures features by foveal sampling - dynamically allocating visual resolution spatially
and temporally to objects relevant to the task. Since foveal sampling uses sensor and processing resources
more efficiently, it supports a decrease of several orders of magnitude in the amount of data processing
needed to execute and complete a vision task. To reduce the cost and complexity of the required real-time
sensor hardware, a spinning glass wheel has been used to build a foveated image sensor. A prototype
demonstration model has been built to verify the concept of the foveated image sensor.

I 1 Introduction

One of the primary difference between the designs of the visual systems of animals and those of current
machine vision systems is that animal sensors are foveated (i.e., they have higher resolution in the center of
the field of view and lower resolution in the periphery), while human-made sensors have constant resolution
throughout the field of view. Clearly, for image rendering applications such as television, constant resolution
is ideal. However, for applications such as object acquisition, and object recognition, constant resolution
image may be far from ideal, particularly as measured by system cost and real time performance.

In recent years, a few researchers in machine vision, neuroscience, and neural networks have argued
convincingly that the best way to cut the costs and increase the capabilities of machine vision systems is to
move to foveated sensors. In fact, a number of impressive demonstrations of the advantages and potential
capabilities of such sensors have been carried out 2 1. Recently, we have developed a new vision system using
a foveated sensor for target detection, classification, and tracking. To derive features, current machine vision
systems start with a uniformly sampled, high-resolution image, and then carry out an enormous number
of arithmetic calculations. In contrast, our vision system eliminates the need for the these expensive and
slow intermediate steps. It measures features by foveal sampling - dynamically allocating visual resolution
spatially and temporally to objects relevant to the task. Since foveal sampling uses sensor and processing
resources more efficiently, it supports a decrease of several orders of magnitude in the amount of data
processing needed to execute and complete a vision task. To reduce the cost and complexity of the required
real-time sensor hardware, we have used a spinning glass wheel to build a foveated sensor.

2 Foveated Vision System

Our foveated vision system contains a Wheel of Fortune sensor (i.e., the foveated sensor), a saccade gener-
ation module, a detection module, a classification module, and a measurement and tracking module. Since

'This work was supported by DARPA under Contract DAAHO1-92-C-RI02 issued by the U.S. Army Missile Command.
2 Y. Y. Zeevi and R.. Ginosar. "Neural Computers for Foveating Vision Systems". In R. Eckmiller, editor, Advanced Neural

Computers, pp. 323-330. Elsevier Science Publishers B.V., North-Holland, 1990.
31. A. Rybak, N. A. Shevtsova, L. N. Podladchikova, and A. V. Golovan. 'A Visual Cortex Domain Model and Its Use for

Visual Information Processinge. Neural Networks, vol. 4, pp. 3-13, 1991.
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Figure 1. A foveal image feature sampling Ipattern rosette with 5 rings and 16 spokes. Figure 2. A saccadle, the movement of the
rosette from one fixation point to the next.

the system is designed to be easy update and maintain, each individual module can be updated without I
significantly affecting other components and new modules can also be added to the system.

The Wheel of Fortune sensor is a foveated image sensor. It is based on the modified version of Rybak's
foveal rosette system 4. The foveal rosette is a sampling frame of concentric rings and bisected by spok•s
as show in Figure 1. The radius of each ring is larger than the previous ring; this provides a nonuniform
sampling pattern. At each intersection of a spoke and a ring, a set of features is gathered. The essential
element of the rosette is the high density of the features near the center of the rosette and regular falloff of U
features to low density at the periphery of the rosette, not their regular spacing. The specific feature set
is based on the concepts of Rybak4 . The scale of the spatial frequency features depends on its sampling
position in the rosette. The scale gets larger towards the center of the rosette to achieve a higher resolution. I
The point on the image that lies at the center of the rosette/foveal sampling pattern is called a fixation
point. The movement of the rosette from one fixation point to the next, which is known as a saccade, is
controlled by the saccade generation module.

The saccade generation module consists c, a neural network and a set of fixed rules. The goal of saccade U
generation is to move the center of the rosette to a repeatable position on each object of interest within
a scene as shown in Figure 2. The neural network is trained by the human "guiders" to move the rosette
to fixation points leading to pre-selected nexus points on objects of interest. A nexus point defined as a I
fixation point that is located at a repeatably finable "center" of spatial frequency activity of an object.
The network learns implicit methodologies for carrying out efficient scene Fearches for nexus points. Each
saccade is less than one rosette radius in length. This ensures that the image information available to the
saccade generator at a given time will be sufficient to derive the neural network. The fixed rules will be
used whenever the probabilities of all the possible rosette moves by the network is low.

3 Wheel of Fortune Sensor Design I
The Wheel of kbrtuu, aensor concept is based on the technology used in the first television industry (c.
1928-1930). These television systems employed a large rotating wheel with a single spiral of pinholes near I
its periphery. A fixed aperture was located near top of the wheel. At the TV station the spinning wheel was
designed such that at each moment, only one pinhole would be within the aperture (it would sweep across

"I. A. Rybak, N. A. Shevtsova, L. N. Podladchikova, and A. V. Golovan. "A Visual Cortex Domain Model and Its Use for
Visual Information Processing'. Neural Networks, vol. 4, pp. 3-13, 1991.
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the image row by row as the wheel rotated). Thus, at each instant, the photoconductor was illuminated
by the light from only one image pixel. The wheel of home TV was identical to that in the studio. It was
synchronized with the studio wheel such that the image would be a reproduction of the scene in the studio.

The Wheel of Fortune sensor design is shown in Figure 3. A rotating laminated glass wheel about 3 cm
thick and 16 cm in diameter rotates at 1800 RPH (30 Hz). On one side of this wheel is a camera lens with
a low f-number. This lens focuses a scene to be analyzed by the machine vision system onto one face of
the wheel as a 3 cm x 3 cm image. This face of the wheel is finished as a fine-grain ground-glass diffusing
surface. On the opposite side of the wheel from the lens is a 2048 x 1 line image sensor with 15 micrometer
pitch pixels. The sensor is mounted in an image sensing block that rides aerodynamically upon the polished
surface of the glass disk at a spacing of less than 1 micrometer.

The glass disk is comprised of 5 or more laminations. Each lamination is an optically fiat disk of glass
with a thin film of hard opaque material on one side of it. This opaque film is etched using photolithography.
The etched pattern consists of a set of circular holes. As shown in Figure 4, these holes are deliberately
designed to align with holes on different lamina to form light paths. Each path begins with at a particular
location within the image and terminates at a particular sensor pixel. Approximately 1000 paths between
the image and sensor simultaneously active at each instant. Each r.'th is approximately 30 micrometers
in diameter, except that in the final layer next to the sensor the diamcter of path can be reduced to effect
a weighting of the amount of light passing to the sensor through the path. By arranging the geometry
of the paths so that no spurious paths are produced, many millions of paths can be implemented in a 16
cm diameter disk. Each path corresponds to the operation of multiplicatively weighting one original scene
image pixel by a positi,,e value and adding this product to an accumulating sum.

Each pixel in the line array records one component of one image feature that utilizes weights between
-1 and +1. For example, one pixel might be configured to receive the weighted pixel inputs needed to

calculate the imaginary positive portion of a two-dimensional Gabor logon at a particular position, scale,
and orientation 5 s. Another pixel might be configured to receive the real negative portion of the same

'J. G. Daugman. "Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression".
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-36, pp. 1169-1179, July 1988.

6J. Buhmann, J. Lange, and C. von der Malsburg. "Distortion Invariant Object Recognition by Matching Hierarchically
Labeled Graphs". In Proc. Intl. Joint Conf. on Neural Networks, vol. 1, pp. 155-159, Washington, D.C., June
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three sectors.

logon. If the paths are configured correctly, as the wheel spins each pixel sensor will receive exactly the
image data it needs to compute its feature. I

Any feature that can be derived from a weighted sum of pixel intensities can be computed. Such
features include those required for object acquisition, object recognition, object measurement, local optical
flow determination, and object tracking. The glass wheel and image sensor system described above actually
computes 3 sets of features per wheel rotation as shown in Figure 5. A third of the wheel's image input
face is coated with a red-pass filter just below the ground glass outer surface. The next third is coated with
a green-pass filter and the final third is coated with a blue-pass filter. Thus, the features derived by the
system are computed separately in each of these three color bands. For other applications, such as for night
vision using thermal infrared, infrared-pass filters covering various wavelength bands could also be used, as
the silicon sensor could be replaced by one more suited for long-wave infrared operation.

By using two lenses and two line sensors it is possible to achieve binocular vision as shown in Figure 6. I
The lenses have a vergence actuator/sensor that is used with some specialized features and feedback loop
to accurately measure the range to a relatively close object. This passive object range capability can be
of great value in applications such as autonomous systems, surveillance systems, and industrial systems for
unconstrained environments.

The maximum computational capability of the Wheel of Fortune system is easy to calculate. In the case
of the binocular line imager system with 2048 features per line imager, an average of, say 65,536 (256 x 256)
scene image pixels used per feature and 180 images per second, the system will carry out as many as 24.2
Gigaops. This performance is quite impressive given a sensor cost of $100 (the high volume commercial
production cost goal).

4 Prototype Demonstration Model

We built a prototype demonstration model to verify the concept of the foveated image sensor. The demon- U
stration model contains 5 laminations. Each lamination is 0.3 cm thick and 19.2 cm in diameter. For
demonstration purposes, we used the principle of electromagnetic reciprocity. Instead of installing a sensor
array and using a set of images to determine that the correct features were being computed, we installed I
light sources (light emitting diodes) at the position where sensors would be and verified that the correct
features were formed on the "image input" side of the wbleel. AP Gabor logon wavelet was used as the test
feature. The real part of this feature, as shown in Figure 7, was sampled in an 11 x 11 pixel window and
these were used to weight the microscopic holes in the first layer. To eliminate the negative values, weights
were shifted and normalized to [0,1]. Figures 8 and 9 shows the microscopic holes in the first and fifth
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layers. Note that the microscopic holes in the first layer were weighted with the real Gabor logon wavelet.

By placing a ground glass screen in close proximity to the front of the wheel we were able to see the features

as the wheel was spun by a battery-powered electric motor at approximately 1800 rpm. These features did

indeed have the appearance of the Gabor logon features as shown in Figure 10. This validates the basic

concept of the Wheel of Fortune sensor.

Figure 7. A perspective plot of the real Figure 8. Microscopic holes in the first

part of a Gabor logan wavelet. layer.

Figure 10. The intensity image of a Gabor
logon wavelet, which is the same as that in

Figure 7, can be seen in the front of the
i wheel.

Figure 9. Microscopic holes in the fifth

layer.
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ABSTRACT

Neural network data fusion system is used for fast and accurate classification of five earth surface conditions and
surface changes, based on seven SSMI multichannel satellite measurements. The system processes sensory data in three
consecutive phases : (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2)
preliminary classification of Earth surface patterns at two, separate and parallely acting, classifiers back propagation
neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain
the optimal performance in overall classification. Both binary decision tree classifier and fusion processing centers are
implemented by neural network architectures. The fusion system con/Aguation is a hierarchical neural network
architecture, in which each functional neural net will handle different processing phases in a pipelined fashion.
There are totally around 13,500 samples for this analysis, of which 4% are used as training set and 96 % as testing set.
After training, this classification system is able to bring up the detection accuracy to 94 % compared with 88 % for back
propagation artificial neural network and 80 % for binary decision tree classifiers. The neural network data fusion
classification is currently under progress to be integrated in an image processing system at NOAA and be implemented
in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

1. INTRODUCTION

Artificial neural networks (ANN), have demonstrated capabilities for robust pattern classification in the presence
of noise and object-to-background sensory uncertainty, such as environmental monitoring applications including land cover
determination, vegetable mapping. soil survey, etc., or multichannel satellite imagery. This paper presents a neural
network data fusion system which will utilize multichannel SSMI satellite imagery, to combine supervised trainable and
self-organized neural network architectures with specific knowledge-based classification techniques, with reference to fast
and accurate classification of earth surface. This neural approach is intended to compensate different classification
techniques by using data fusion method and to reduce the lengthy training time required in supervised learning networL
The overall neural network data fusion system, which will be described in more detail, can also be seen as a four-layered
supervised network which is composed of several modular and hierarchical networks. In this paper, we will start by a
background discussion of the measurement used in this study. The ANN approaches, the BDT approaches implemented
by an non-adaptive ANN, and the fusion system will be presented. Hardware implementation of each component in a
Modular Parallel Ring (MPR) will also be discussed. Some experimental results will be presented and summary will be
given7
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2. BACKGROUND I
This section briefly review the relevant characteristics and pre-processing for the SSMI data set used in this study.

The more detailed description of the SSMI measurements and pre-processing can be found in literatures1 . The SSMI
instrument, flown on board the Defense Meteorological Satellite Program (DMSP) polar orbiting satellites, is a
seven-channel conically-scanning microwave radiometer, measuring brightness temperatures at 19, 22, 37, and 85 GHz.
All measurements are obtained with dual polarizations (H and V) except for 22 GHz channel. It provides unique I
signatures for identifying surface features and obtaining the temperature and condition of the Earth's atmosphere. The

measurements at different frequencies, different spatial resolutions are convolved to the 55-kmi resolution of the
lowest-frequency channel. This enables each pixel to have seven different measurements without having to consider the
effects of spatial inhomogeneity on the different channel measurements. The measurements (brightness temperature or
sometimes called antenna temperatures) used in this study were made between November 1988 and January 1989 and
covers over the northern hemisphere. The data was identified and confirmed by *ground truth* as five different data sets
corresponding to five different surface classes: non-scattering medium (Non-Sm), precipitation over the ocean (R-Ocean), I
snow cover land (Snow), precipitation over the land (R-Land), and the desert (Desert). Each class has different samples
ranging from 500 to 5000 and there are totally over 13,500 samples. Table I illustrates some SSMI measurement
classification characteristics including SSMI measurements and surface features2.

3. NEURAL NETWORK DATA FUSION SYSTEM

This system will process sensory data in three consecutive phases, as follows: (1) pre-processing, aimed at
extracting feature vectors and in enhancing separability among detected classes; (2) preliminary classification of Earth
surface patterns at two, separate and parallely acting, classifiers back-propagation ANN (AP ANN) and binary decision I
tree (BDT); and (3) fusion of classification results performed at global fusion center (GFC) from different classifiers and
imagery to obtain the optimal decision. The configuration is a hierarchical neural network architecture, in which each
functional neural net will handle different processing phases in a piplined fashion.

3.1 Pre-processing
Pre-processing for SSMI imagery includes mainly the generation of (7 x 7) covariance matrices from measured

brightness temperatures at each pixel. Information about pixel brightness temperatures, covariance matrix elements, and
desired surface class definitions, is collected in a feature vector for the supervised training of a neural network classifier.
It has been demonstrated that increasing the elements of the feature vector by adding more relevant parameters, derived
nonlinearly from original features, can reduce the number and size of hidden layers, and can also reduce the training time I
[Marks, et al, 1988]. Since the covariance matrix evaluation involves the manipulation of two matrices, the operations
involved are suitable to neural network implementation by feed-forward topologies, by merely assigning two manipulated
matrices to the weights and input vectors of the back propagation neural architecture, as has been investigated. I
3.2 Preliminary Classification

a. BP ANN Classifier
A two-layered (one hidden layer) supervised back propagation algorithm is used to train the network to become

a feed forward pattern recognition engine to learn the input feature vectors corresponding to different output classes. I

'Grody, N.C., 1991, "Classification of Snow Cover and Precipitation Using the Special Sensor Microwave Imager, J.1
Geophy. Res., Vol. 96, No. D5, 7423-7435.2Lure Y.M.F., N.C. Grody, Y.S.P. Chiou, and H.Y.M. Yeh: "Classification of Earth Surface from Special Sensor

Microwave Imager (SSMI) Using Artificial Neural Network (ANN) Data Fusion," IGARSS '92, May 26-29, Houston,
TX.

3Rumelhart, D.E., J.L McClelland, "Parallel Distributing Processing: Explorations in the Microstructure of Cognition,"
MIT Press, Cambridge, MA, 1991. 3
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There are 14 input neurons corresponding to SSMI measurements as well as their covariance matrix, 60 hidden neurons,
and 5 output neurons representing 5 surface conditions. It takes around 40 and 160 iterations of presenting training set
to train the BP ANN classifier up to 90% and 100%, respectively.

b. BDT Classifier
The BDT classifier is constructed to implement Grody's global classification algorithms as in Figure 2.1 They

are designed to analyze global coverage of satellite data sets and to classify based on the physical characteristics of
measurements and on surface types. This technique performs a hierarchical tree-structured decision procedure through
the evaluation of polynomial functions of input feature elements and through thresholding. The special topology of BDT
classifiers, used for surface condition classification based on SSMI measurements is drawn from the so-called Entropy
Net architecture4 . This architecture includes a two-layered topology, of which the lower layer performs arbitrary mapping
of thresholding operations while the upper layer performs logical operations (e.g. AND, OR) which allow us to convert
the hierarchical decision procedure into a fully parallel process. The weight vectors between the layers are determined
from the coefficients of polynomial functions. A striking advantage of the proposed neural implementation architecture
is that it allows us to specific the number of neurons needed in each layer, along with the desired output. This, in turn,
leads to an accelerated progressive training procedure, that also allows each layer to be trained separately.

There are 5 neurons corresponding to 4 SSMI measurements as well as one element of covariance matrix and
5 output neurons for each surface class. The individual decision from both BP ANN and BDT modules are sent to the
global fusion center (GFC) for final decision.

3.3 Fusion Processing
The fusion processing involves global fusion center (GFC) operations, which integrates results from both BP

ANN and BDT classifiers. The GFC is composed of several different data fusion center (DFC), each of which
corresponds to different types of output classes. A self-adjusted or self-trained learning algorithm is used in each DFC
to set the optimal decision rules such that the total probability of detection is maximized. This data fusion scheme, also
called distributed-detection scheme, corresponds to a two-layered network of nonlinear threshold elements (e.g., binary
or sigmoidal functions). Their weights of these elements are trained by using off-line stochastical information to form
detection system. The stochastic information including priori probability, probability of false alarm, and of missing
detection is obtained by comparing classification results from individual classifiers with ground-truth data. The
approximation rules are obtained from the nonlinear combination of the statistics of previous classification results from
individual classifiers5 . The DFC can be further implemented by using a self-adaptive neural net such that its weights and
bias are calculated based on the analogue output values of BP ANN and BDT for each SSMI measurement.

4. IMPLEMENTATION PROCEDURE

The procedure for implementation of neural network data fusion can be summarized as follows:

1. Preparation of training set.
2. Separation of training set into several groups such that the clustering center of each class among same group

are easy to be separated.
3. Selection of neural classifiers such as BP ANN and BDT preliminary classification.
4. Training of preliminary classification processor to a satisfactory accuracy.
5. Evaluation of the results from preliminary classification to obtain the detection statistics.
6. Determination of weights and bias in each fusion center from the detection statistics.

4Sethi, I.K.: "Entropy Nets: From Decision Trees to Neural Networks." Proc. of the IEEE, Vol. 78, No. 10, October
1990.

-%Tenney, R. R., and N. R. Sandell, "Detection with distributed sensors', IEEE Trans. Aeros. Elec. Sys., pp 501-509, 1981.
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5. CLASSIFICATION RESULTS 1

There are totally 13,787 samples of data used in this study. Each of five different classes contains from 500 to 5,000
different samples. We used 500 samples of data as training sets which represent 3.6% of the total samples. Each training I
set, obtained randomly from the total data set, consists of equal amount of samples from five different classes. Rest of
the samples (over 96%) are used for testing the network. Once the BP ANN is trained either fully or partially, it is used
to perform the classification. The classification accuracies, by using the fully-trained BP ANN classifier (Le., all training
patterns are recognized by this BP ANN), are 82%, 98%, 97%, 78%, and 79% for non-scattering medium, precipitation
over ocean, snow, desert, and precipitation over land, respectively (Lure, et al., 1992). The classification accuracies are
99%, 56%, 81%, 57%, and 70% for each surface class. Note that the class of non-scattering medium represents the
surface which can not be easily, specifically identified as any other four surfaces. The overall accuracy for BP ANN
approach is around 88% whereas it is around 80% for BDT classifier. The preliminary results show that the neural
network data fusion system improve the classification accuracy for all classes by around 4 % from BP ANN's results.
The overall accuracy of neural network data fusion is improved to 94 %. Even without fully-trained (e.g., 90% of training I
set are learned correctly by BP ANN) the overall classification accuracy can still maintain simnila classification accuracies.
From the coefficients of data fusion center, it is also found that BP ANN plays more important role in classifying the
non-scattering medium, snow, and desert; whereas the BDT are more dominant in classifying the other two surfaces.
The significance of each SSMI measurement to classification of each of five surface types can also be obtained through
the linearlization procedure of the weights described in the previous study.

6. SUMMARY

In this research effort, neural network data fusion system is presented to classify surface types based on the SSMI
measurements. Both back propagation ANN (BP ANN) and binary decision tree (BDT) classifier are used for this study. I
Seven SSMI measurements (brightness temperature at 19, 22, 37, and 85 GHz for H and V polarizations, except H for
37 GHz) at each image pixel are extracted as an input feature vector. Five surface types including non-scattering medium,
precipitation over the ocean, snow cover land, precipitation over the land, and the desert are used as target patterns.
After trained by using less than 4% of the samples, both BP ANN and BDT are able to perform the classification over
13,500 samples. The overall accuracy for BP ANN and BDT approaches are 88% and 80%, respectively. The neural
network data fusion system which fused the individual decision from BP ANN and BDT improved the overall accuracy
to 94%. The significance of contribution from either approach is determined based on the coefficients of data fusion
center. The fusion system is currently implemented in a massively parallel and dynamically reconfigurable neural network
hardware (Modular Neural Ring) for real time parallel processing6 and integrated in an image processing system at
NOAA/NESDIS. The hybrid classification system not only preserves the advantages of both BP ANN and BDT I
classifiers (for example, the capability of physical interpretation of input feature space from the BDT classifier and robust

classification from the BP ANN) and but reduce the pitfall of individual classifier (for example, brute-force training of
the BP ANN module and sensitive to noise for the BDT module).
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I Table 1 SSMI classification characteristics

Channel frequencies and polarizations

SSMI Measurements TH(19) TV(19) TV(22) TH(37) TV(37) TH(85) TV(85)3 Surface Conditions Non-SM R-Ocean Snow R-Land Desert

SSMI
Satellite Measurements

Bac IItop II Ir

Figure 1. Neural Network Data Fusion System for SSMI Measurements
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Abstract
Two neural networks were used for single-pixel classification of an agricultual scene

imaged by a multispectral scanning sensor. Data collected in five wavebands from the near-infa-
red so the short-wave infrared were used to train and test multdi-layer perceptirn and Kohonen
neural networks. The ability of thes networks to disiminate between five terrain classes found
in an agricultural scene was shown to be equal io or better than a classcal maximum-likelihood
classifier, with the Kohonen network demonstrating the best classification performance of the
three techniques.

1.0 Introductkio

Multispectral sensors add a third dimension to conventional imaging by supplementing 2-D spatial infor-
marion with a spectral response in a number of selected wavebands. Tmis type of data allows discrimination of
classes via their spectral signature without requiring a description of thew spatial properti Single-pixel discrm-
iuaton relies solely on a characterization of spectral signatures, and a judicious selection of wavelengths with
which to image can exploit the diffetences in spectral signa•ues between classes of interest. The development of
nultispechal classification algorithms that do noc rely on spatial characteristics is of interest, and we discuss here

the results of implementing two distinct neural networks to classify a specific set of terrain types found in an agi-
cultural saeem

Section 2 briefly dimsses the two neural networks, the multi-layer percepro and the Kohonen slf-org-
nizing, that were applied to this problem. Section 3 de•cribes the sensor and the spectral wavebands used, and die
agricultural scene of interest and the classes therein are shown. The results of classfying the scene with the neural
networks and a suatisticaily-based maximum-likelihood classifier ae presented in Section 4, and the classification
experiments are sunmarized in Section 5.

2 Nemral Network Overview

Two neural networks, the multi-layer perceptron and the Kohonen self-organizing feature map, were
applied to this problem. The multi-layer perceptr• (MLP) is a well-known fully-connected network consung of
pmceuin nodes tdt pas the weighted sum of the inputs to that node plus a threshold through a nonlinear func-
dw, in ths cme a sgmoidal nonlinearity. The back propagon trung algorhm is used with MLF networks
dat have continuously differentiable node nonlineaities. It is a least-mean-squares gradient search algorithm that
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minimizes the mean-squared difference between the actual and desired outputs of the network by propagating the 5
eror at the output back through the network, adjusting node weights and thresholds appropriately. The back prop-
agation algorithm is supervised; it performs a search based on the difference between the actual output and the
desired outpuL There ae versions of this iterative training algorithm for which the training is accelerated, but no
such variant was used in this work. A very basic description of the MLP and the back propagation algorithm is
found in Ref. 1.

Very different from the MLP is the Kohonen self-organizing feature map, which has been applied to pattern
classification and vector quantization [1]. As the name implies, the Kohonen network learns in an unsupervised I
mode, clustering inputs with common features. Upon convergence, node weights tend to specify clusters in the
output that are distributed according to the probability density function of the input training vectors [2]. The net-
work consists of a single output layer that is fully connected to the input layer, and every output node has an asso- I
ciated neighborhood of other output nodes, each at a given distance. For a given input, the network finds the
winning output node, defined as that node with weights that are closest to the input with respect to some metric,
typically Euclidean distance. During training, the weights of the winning node and its topological neighbors are I
updated and another input is presented. This proceeds in an iterative manner with the neighborhoods slowly
shrinking in size until each neighborhood has only a single output node; i~e., only the weights of the winning node
are updated. After training, the weight vectors for an output node tend to rewmble the mean of the class repre-
sented by that node. The training procedure for the Kohonen network is discussed in more detail in Refs. 1 and 2.

Th non-parametric neural network classifiers were compared to a model-based maxmum-lelihood (NE)
classifier. The ML classifier makes a Gaussian-distributed assumption and requires estimates of the mean vector 3
and covariance matrix to compute the class-conditional density functions. For our case, the means and covari-
ances for each class are formed through supervised training. Once trained, the ML classifier assigns to a pixel the
class with the underlying Gaussian density which maximizes the probability of the pixel occurring given that
class.

3.0 Descripdlom of the Multispectral Data

The neural networks discussed in Section 2 were applied to the problem of classifying terrain types from
image data collected by the ERIM M7 scanning multispectral senso The M7 scanner is an airborne passive sen-
sor that collects data in 16 wavebands spanning the ultraviolet, visible, near-infrared, and the short-, mid-, and
long-wave infrared. Along with signal returns from the ground, the sensor collects calibration data for each wave- I
band. The calibration information enables the removal of sensor bias as well as the conversion of M7 signal
counts to scene radiance. To make the multspectral classification experiments mom realistic, we restricted our-
selves to using only a subset of the available bands. A deployed sensor typically would not have the luxury of, or
in many cases would not require, the large number of bands available from the M7 sensor. We chose for agricul-
tural classification the 5 bands in Table 1. These bands were chosen to exploit the differences in spectral responses
of vegetation and soil types. A different set of bands could have been selected for other classification problems. 1

Channel Number 50% Response (On-Off un) Bandwidth (jun)

8 0.646 - 0.723 0.077

9 0.811 - 0.938 0.127

11 1.230-1.296 0.066 1
12 1.60- 1.665 0.106

13 2.012- 2.290 0.278

Table 1: M7 wavebands used for multispecral classification.

A standard procedure was adopted for preprocessg the M7 data. The first step is to subtract the sensor

I
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bias measured during the collection for each channel After bias subtraction, the data for each channel are scaled
such that 95% of the data in that channel fall in the range [0,1] after scaling. This scaling accommodates the neu-
ral networmks, which are typically trained with data scaled to roughly this range. The scaling information was
obtained from a post-collection histogram of each channel, but could be done in real-time if necessary by adjust-
ing the sensor gain to match the sensor gain used during the collection from which the training data were obtained.

An agricultural scene over Coldwater, MI was selected for the multispectral classification experiments. A
700 x 600 square-pixel portion of this scene in the 0.494-0.531 pin (green visible) band is shown in Fig. 1 along
with ground truth. The sensor followed the road down the middle of the scene, collecting returns from both man-
made and naturally-occurring areas. The ground truth for this scene is in areas quite good; in general the fields
observed in this region consisted primarily of vegetation (weeds, alfalfa, grass) or they were mostly plowed,
exposing the soil. The ground truth in Fig. I(B) shows the primary classes in the image and their approximate
location. The blank regions in this map are areas for which there is no ground truth available, oi which contain
man-made objects, such as buildings, for which there is limited data compared to the larger natural regions.

(A) (B)
Figure 1. M7 agricultural scene over Coldwater, Nfl. (A) Image in visible (0.5 pm) band-,

4. Multispectral Classification Results

The primary classes found in the Coldwater scene are shown in Fig. 1(B): grass, soil, fores&, water, andI road. The other major class in the scene is buildings, but these vary greatly depending on the type of material used
for the roof, the angle of the building relative to the sensor, etc. We chose to train the multispectral classifiers to
discriminate between these 5 classes for which there is an ample amount of both training and testing data.I ~The selection of trainig regions followed several self-imposed guidelines. We first decided to use only a
small fraction of the available data for training the classifiers. Thie training set consisted of 1000 pixels from each
class; the resulting 5000-member training set represents only 1 % of the data in the scene. The training data was
takten from rectangular tegions, where pixels from the same class are likely to be similar to one anotheE In this
cae the. inter-class variance of the examples possibly could be smaller than the varaiace of all the pixels of that
class located throughout the entire scene. Another characteristic of the training set is that the representative rect-
angular regions from each class were chosen as close to the horizontal center of the image as possible. The sensor
roughly followed the road down the center of the image, so pixels near the center of the image are closest to the
sensor, and the pixels at the edge of the image where the aspect angle is large are farthest from the sensor. Pixels
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at the c pe of the image, therefore, are more likely to suffer from atmosphric path-length attenuation, and these j
pixels Ljuld be more difficult to classify corectly. By choosing the training regions near the center of the image
where path-length is at a minimum, we we not giving the classifiers any advantage when classifying pixels at the
edge of the image.

The Kohonen self-organizing network topology is defined by the problem: we have a 5-class problem
using data from 5 spectral bands. The Kohonen network consists of a single layer connecting the 5 input nodes,
corres;onding to the number of bands, to the 5-node output layer, corresponding to the number of classes. A linear I
output-node topology was selected for the 5 x 5 network. that is, output nodes are connected in a line, where
every node but the two end nodes has two neighbors. Because of this, the output node weights that ar most sim-
1w after training tend to be nearest neighbors. The MLP input and output topology is similarly defined by the
problem, but the number of hidden layers and nodes in these layers must be determined. It has been shown that no I
more thPn three layers are required to from arbitrarily complex decision regions, but in practice two layers are
usually sufficient. We expeimented with a number of two-layer networks, and we were satisfied with the perfor-
.- ance of the simplest of these networks: a 5 x 5 x 5 two-layer perceptmro.

The three classifiers were trained with the 5000-pixel training set, and were then applied to the entire Cold-
water scene. The resulting classification maps we shown with the ground truth in Fig. 2. A threshold was not
applied by any of the classifiers due to the difficulty in selecting a single threshold for each classifier that yielded
the same false alarm rate in every classifier for all the classes. Also, although the ground truth for this scene is
good on a large scale, it is difficult to establish the pixel-by-pixel ground truth, and so the false alarm rate would
be difficult to accurately measure. The 5 x 5 Kohonen network classification in Fig. 2(B) is the best of the three 3
classifiers. The grass regions are classified nearly perfectly, as are the areas of soil. The lake and the river feeding
it are clearly recognized, and the road is correctly classified, but with a smaller width than observed in the image.
In some areas the shoulder of the road was not assigned to the road class. The forest area is not homogeneous,
mixing areas of soil and scattered grass pixels. It is difficult to detennine the exact ground truth for this region, so
it is• not clear whether thes areas of soil ae incorrect. Several small clumps of forest we clsified along the road,
presumably from single trees. Scattered throughout the classification maap are pixels classified as rad where one
would not expect to find this class. These misclassifications tend to be in areas near soil, mid an examina of the I
mean spectral signamres estimated for these two classes reveals a high degree of similarity. These two classes pro-
vide the most difficult discrimination test for all the classifiers. Overall, however, the Kohonen classification is
very accuate. I

The MLP classification in Fig. 2(C) is accurate in the water areas and in the grass region to the right of the
road. Classification of the forest region is more uniform than for the Kohonen network. and the road width
(including the shoulders) is more consistent with the data than for the Kohonen classifier. However, the MLP has I
difficulty distinguishing soil from road. We observe that soil pixels in the lower left region of the scene are often
mistaken for road. This is a region in which ther is quite a bit of variability in the soil that was not captured in the
tnning set. The mine type of inhomogeneity is found in the grass region to the left of the rad, and we see milar
misclassih€cations The worst classification of all is from the ML classifier [Fig. 2(D)]. The regions where it makes
mistakes are similar to those for the MLP, however, it makes mistakes far moic often. The estimates of the mea
and covariances for each class did not sufficiently capture the variability in areas outside of the training regions.
Also, a histogrmn of the road and water classes reveals that a Gaussian assumption may not be appropriate for 1
these classes. The ML classifier performs well in the forest area, but it cannot handle most of the soil ars and
does poorly in much of the grass regions. I

5.0 Summary of Clafficatlo Results

The neural network classifiers met with excellent success for the 5-band multispectral classification of the
Coldwater agricultural scene. Of the three classifiers, the Kohonen network demonstrated the best classification
perfomm ce. The Kohonen network achieved near-perfect classification of the grass, soil, mad, and water, and
verny good perfortmwe in the inhomogeneous forest region. The MNP amd ML classifiers also performed well, but
fequent•y misclassified portions of the soil areas as road. Variability in both die soil and grass regions that was I
not captred in the training set caused problems for these two clasifiers but the Kohcnen network was mor

I
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(A) (B)

I!

(C) (D3)

Figure 2. Multispectral classification results. (A) Ground truth; (B) 5 x 5 Kohonen network;
(C) 5 x 5 x 5 multi-layer perceptn; (D) Maximum likelihood.

robust with respect to these variations. The Kohonen network tains more quickly than the MLP, is unsupervised,
and requires fewer computations during classification that do the other two classifiers. Overall, the performance of
the MLP was slightly better than that of the ML classifier. The ML classifier might be improved with more train-

ing data, or by splitting terrain types with large variability into more than one class. Large amount of training data
for estimating means and covariances is not always available, however, which makes the neural networks more
attractive.

6.0 References

[1] R. Lippmann, "An Introduction to Computing with Neural Nets," IFE. ASSP blagazine, p. 4, April 1987.

[2] T. Kohonen, "Self-Organization and Associative Memory," Springer-Verlag, Berlin, 1984.
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(U) A new approach to multiple target tracking in heavy clutter is developed. This approach
utilizes Bayesian classification techniques for associating data on multiple scans. Efficient implementation

of this approach is made possible by using the Maximum Likelihood Adaptive Neural System's (MLANS)l unique feature of combining neural networks and model based techniques. The approach is equally

applicable to active sensors, IRST, or multiple sensors.

(U) We have developed a novel approach to tracking multiple objects in heavy clutter based on a previously developed
MLANS neural network123 . In our approach, the MLANS estimates target and track models in real time and performs a fuzzy
classification of all targets in multiple frames into multiple classes of tracks and random clutter. This novel approach to tracking
results in a dramatic improvement of performance: the MLANS tracking exceeds performance of existing tracking algorithms, it
is capable of track initiation by considering multiple frames, it eliminates combinational search via fuzzy associations, and it is
utilizing track models as well as target feature models for data association and track initiation and maintenance.

I (U) Historically, intrinsic mathematical similarities between tracking and classification problems have not been
explored. Tracking problems have been characterized by an overwhelming amount of data available from radar sensors. ThisI has led to the development of suboptimal algorithms amenable to sequential implementation for handling high rate data streams.
Such algorithms based on Kalman filters converge to the optimal, Maximum Likelihood (ML) solutions, however, their
generalization to multiple object tracking has been difficult4 . Classification and pattern recognition problems, on the other hand,
have been characterized by insufficient amount of data for unambiguous decisions, which has led to the development of BayesI classification algorithms, optimally utilizing all the available information.

(U) Such optimal utilization of information is lacking in existing tracking algorithms. This leads to difficulties withIctracking multiple objects in heavy clutter. As a number of clutter returns increases, it is becoming increasingly difficult to

I lPerlovsky, L.I., "Multiple Sensor Fusion and Neural Networks," DARPA Neural Network Study, MIT Lincoln Laboratory,
Lexington, MA, 1987.
2Perlovsky, L.I., "Neural Networks for Sensor Fusion and Adaptive Classification," First Annual International Neural NetworkI Society Meeting, Boston, MA, 1987.
3perlovsky, L.I. and McManus, M.M., "Maximum Likelihood Artificial Neural System (MLANS) for Adaptive Classification
and Sensor Fusion, Neural Networks, 4(1) pp. 89-102, 1991.I 4Biackman,S.S., Multie Targt Tracine with Radar Atmications, Artech House, Norwood, MA, 1986.
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(U)1
maintain and especially to initiate tracks. A near optimal algorithm, the Multiple Hypothesis Tracking (MHT)5 , initiates tracks
by considering all possible associations between multiple objects and clutter returns on multiple scans. This problem, however,
is known to be NP complete6 , its optimal solution requires combinatorially large amount of computation, which is difficult to
handle even for neural networks, when a number of clutter objects is large. A partial solution to this problem is offered by the

Joint Probability Density Association (JPDA) tracking algorithm7 , which performs fuzzy associations of objects and tracks,
eliminating combinatorial search. However, the JPDA algorithm performs associations only on the last frame using established I
tracks and is, therefore, unsuitable for track initiation. f

(U) The MLANS neural network explores mathematical similarity between tracking and classification problems and
applies optimal Bayes methods to the problem of tracking multiple objects. By applying fuzzy classification to associating data
in multiple scans and the ML estimation of track parameters the MLANS combines the advantages of both the MHT and the
JPDA. In MLANS tracking, each track is a class characterized by the state parameters and by the track model. For example, m
linear tracks are characterized by their initial positions, velocities, and a linear model relating target coordinates over time to their 5
current positions. Target models are characterized by features such as amplitude or shape of returned pulses. The parameters of
these models are estimated adaptively, in real time. In addition to the track state parameters, each class-track is characterized by
its covariance matrix, which can be adaptively estimated or fixed using prior knowledge about tracks and sensor accuracy. 3
Utilization of track and target models within the neural network architecture leads to fast learning approaching the information- i
theoretic limit established by Cramer-Rao bounds. The MLANS performs the optimal estimation of track parameters, utilizing all
the available returns from several scans. This optimal utilization of all the available information makes the MLANS ideal for
track initiation, as well as for track maintenance in heavy clutter. The MLANS is applicable to both, coherent, radar tracking as
well as to incoherent imaging sensor data.

(U) In the example below, the MLANS is applied to tracking three objects in random clutter, using simulated pulse- 3
Doppler search mode radar data. The scattered plot in Figure 1 shows the distribution of returns from 10 scans in the Doppler-
velocity vs. range coordinates. About 1000 random clutter returns appear distributed throughout the plot, while three clusters of
returns corresponding to the moving objects have approximately 100 returns each. Due to a wide beam employed in a search
mode, there is approximately 10 returns from each object per scan. The scatter seen in object returns along the Doppler velocity 3
is determined by the radar accuracy, while the scatter along the range axis is due to both, the radar accuracy and the motion of the
objects. Each return is characterized by its time and by its 4 coordinates: range, Doppler velocity, elevation and azimuth angles.
The MLANS is using time as a parameter of the track models to project each track to its current position. By clustering these data 5
in the 4-dimensional coordinate space, the MLANS initiates and estimates track state parameters which are shown in Figure 1 by
illustrating I0-" ellipses of the estimated parameters. The accuracy of this estimation is determined by the Cramer-Rao bound
due to the ML estimation performed by the MLANS. 3

(U) Let us examine now the MLANS association of tracks and radar returns. In this example, the MLANS maximum
number of allowed tracks was 5. The MLANS performs fuzzy association by calculating a probability P(kIN) for each return N £
to belong to track k. These probabilities are shown in Figure 2. It is seen that three tracks (1, 2, 3) have nearly 100% 3
probabilities for all returns from the three objects with very little clutter contribution, two tracks (4 and 5) acquire just a few
clutter returns and are terminated, and nearly all the clutter returns am identified as such with 100% probability. The three tracks
acquiring real objects are declared detections and their trajectory parameters are output by the MLANS. Each of these tracks 3
acquire -1 clutter return, or 0.1 % of 1000 total clutter returns: this number corresponds to the best possible performance; it is the U
true overlap (the Bayes error) between distributions of clutter and track returns for this case. The MLANS achieved the bounds
of the Bayes errors for accuracy of association and Cramer-Rao bounds for accuracy of track parameters. 5

5 Singer, R.A., Sea, R.G., and Housewright, R.B., "Derivation and Evaluation of Improved Tracking Filters for Use in Dense
Multitarget Environments," IEEE Transactions on Information Theory, IT-20, pp. 423-432, 1974.
6 Parra-Loera, R., ThompsonW.E., and AkbarS.A., "Multilevel Distributed Fusion of Multisensor Data," C',nference on Signal
Processing, Sensor Fusion and Target Recognition, SPIE Proceedings Vol. 1699, 1992.
7Bar-Shalom, Y. and Tse, E., "Tracking in a Cluttered Environment with Probabilistic Data Association," A uomatzica, 11, pp.
451-460,1975.
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(U) In the next example, Figure 3, the MLANS is applied to tracking four objects in random clutter. The objects #3 and I
#4 initially occupy same range and Doppler cells, making initiation of tracks difficult for existing algorithms. Our results
indicate that the MLANS successfully initiate tracks for crossing and maneuvering objects.

" I l I I I i . I 1 q i .I I

ESTIITkrED CURRE&IT 'ANEgRING

STATE PRAMETERS " OBJECT #4

md "O* I 4 5 ' I .

# I m . o.. o a I, - •1
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(a) (b) I
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Figure 3. (U) The MLANS Tracking Maneuvering and Crossing Objectsn

(U) Data corrlation and tracking capabilities of the MLANS described above can be extended to multiple sensors in a
straightforward way: the fact that data come from a single sensor is not essential in the abovc described example. The problem
of sensor fusion is a difficult one for the application of standard optimal Bayesian inference because the statistical distributions of
the data are not known exactly. The absence of knowledge of the prior probabilities has been long recognized as a difficulty for
the Bayesian approach. In reality, however, the problem is not limited to the absence of knowledge of the priors, but in fact all
the distribution parameters are usually unknown, and the common assumption of Gaussian distributions is not usually valid. The I
MLANS capability for adaptive classification that was essential for tracking is also useful for sensor fusion via adaptive 1
estimation of object distributions3 . The MLANS is also useful in complicated cases when the information to be fused originates
from sensors of different types, having different coverage or field-of-views (FOV), or operated asynchronously. Data sets ma
resulting from such observations are often incomplete: while many objects are observed by a single sensor, only a few may be I
observed by all the sensors. The MLAS fuses such incomplete data sets, using a recently developed technique described in
Perlovsky and Mairetta8.I

I

3 perlovslky, LI. mind McManus, M.M., 4Maximum Likelihood Artificial Neural System (MLANS) for Adaptive Classification
and Sensor Fusion, Neural Naworle, 4(1) pp. 89-102, 1991.
8 pcrdovsky, L.I. and Marietta, T.L., "Estimating Covariance Matrix from Independent Incomplete Realizations of a RandomI

Vector,' accepted for publication in IEEE Trans. on Signal Processig, 1992. I
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3 Abstrct - A long-standing method for contact state estimation involves physically marking a surface with bearing lines
and then systematically looking for contact tracks that satisfy predetermined "speed strip" constraints; namely, given a
contact moving with constant velocity and heading, it is constrained to traverse equidistant points over equal time
intervals. The Neurally Inspired Contact Estimation (NICE) system has been developed to automate this method. NICE
is a fixed-architecture artificial neural network inspired by the biological retina system. The marking surface is
represented by an input layer of receptor neurons; presentation of bearing lines over this field provides stimulation to the
underlying receptors. Subsequent neural layers are selectively interconnected to impose the speed strip constraints of
constant velocity and heading. The output neural layer derives the bearing, range, course, and speed values associated
with the most likely contact track. This paper presents the NICE method, discusses potential usage, and compares the
NICE method with the Cramer-Rao lower bound.

1 1. INTRODUCTION

3 1. Contact State Estimation Problem Domain

The general contact state estimation, or target motion analysis, problem is to estimate contact location and motion
from available sensor readings. In a general sense, each sensor reading provides constraints on the contact state. For
example, a line-of-sight bearing reading of 305 degrees at time 0700 constrains the contact to be somewhere on a line
northwest from the observer's location at 0700. If sufficient observations are available, including at least one observation
platform maneuver, and if assumptions are made about the contact motion (such as constant speed and heading), then the3 contact state may be constrained to only one possible solution1,2 . In this case, the contact state is said to be

I S.C. Nardone A VJ. Aidala, "Observability Criteria For Bearings-Only Target Motion Analysis", IEEE Transactions on
Aeospce and Electronic Systems, Vol. AES-17, No. 2, March 1981.

2 K.F. Gong, S.E. Hammel, S.C. Nardone & A.G. l.indUrg, Three dimensional Contact Parameter Estimation", Proceeis o
do Sixteenth Asiloma Conference on Circuits. Systems and Comanters, November 1982.
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observable. A great deal of work has been done to determine the circumstances under which various aspects of contact 3
state are observable. The important point here is that contact state estimation is a constraint problem.

Due to the uncertainty, or error, associated with physical sensor readings, contact state determination is indeed a
parameter estimation problem3 ,4,5. Even though the contact scenario may be fully observable, noisy sensor readings
will preclude an exact solution to contact state (i.e. the true solution). A method must be employed to determine the
most likely estimate of contact state. Typically, mathematical estimation techniques such as least squares or maximum
likelihood are employed, and are based on some measure of compliance between actual and hypothesis-predicted 1
observations. A related issue is solution sensitivity: Given that the observations are noisy, which non optimal contact
state solutions are above a certain degree of likelihood? Furthermore,'are the almost-optimal solutions tightly or loosely
clustered in the contact state space?.5

2. Speed Strips Method

The speed strips method has been a long-standing technique for estimating contact state. This method is illustrated in
figure 1. which shows a two-leg observer scenario with line-of-sight bearings to a contact observed at equal time
intervals.

I
CI
BI

Figure 1. Spee Sti iing

If one assumes that the contact maintains constant heading and speed during this period, one can search for the contact
by laying a straight-edge across the bearing lines and moving it around until a placement is found wherein the distance
traversed between observations is proportional to the time between observations. In this example, path A satisfies the I
"equal distance between equal observations" constraint Note that the magnitude of the distance on path A (i.e. the length
of the strip) is proportional to the speed of the contact, hence the method name of speed strips. For comparison, note
that paths B and C violate the constraint, and are not valid contact paths. 1

Speed strips obviously implement the constraint nature of contact state estimation. With noisy observations, the
operator would manipulate the speed strips to find a most likely estimate of contact path since no path would likely fit
exactly. Solution sensitivity would be evident in how far the speed strip could vary from the best solution while still
fitting reasonably well to the bearing lines.

2. NICE: AN ANN FOR CONTACT STATE ESTIMATION 1

Our biological neural networks (human brains) are able to process diverse information ranging from sensory inputs to
higher order reasoning. The scenario in figure I was presented to the reader in a visual manner. Can one find the best
solution by visual processing alone? Not easily, or speed strips wouldn't be necessary. The input layer of neurons in the
human vision system feed into hidden layers that extract various correlations in the raw image, edges of figures for

3 J.G. Baylog. A.A. Magliaro, S.M. Zile & K.F. Gong, "Underwater Tracking in the Presence of Modeling Uncertainty". I
Pmceedints of the Twentv-First Asilomar Conference on Signals. Systems and Comrnlters, November 1987.

4 K.F. Gong. J.G. Baylog & A.A. Magliaro. A Decision-Directed Approach to Solution Integration for Tracking in an
Underwater Environment", Proceedinga of the Fighteenth Asilomar Conference on Circuits- Systems and Comoute
November 1984.

5 C.M. DeAngelis & R.W. Green, "Constructing Neural Networks for Contact Tracking", Neural Networks for Signal Processing
- Proceedings of the 1992 IEEE Workshop. 3
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example. Note that an edge is just a line segment in the visual field where on one side receptor neurons are more excited
by more light, and on the other, less excited by less light. In contrast, humans do not appear to have hidden layer
neurons that correlate visual input and detect paths that are evenly spaced between bearing lines!

The fact that humans do not possess speed strip constraint processing neural networks does not preclude construction
of such artificial neural networks (ANNs5. In considering such a network, the first question is: How should the inputs
be represented? A simple way is to represent the two dimensional ocean surface of interest as a square grid (or plane) of
input neurons with a separate plane allocated for each bearing observation time. A given input neuron will have an
activation of '1' if a bearing line traverses the ocean grid cell it represents (i.e. stimulates it), and 'V otherwise.

The next question is: How could the correlation layer be configured to embody the speed strip constraints? A
straightforward way is to have a correlating neuron for each possible contact path. Each path would be defined by the
ocean grid cells in which it begins and ends. The correlation neuron would be connected to the appropriate ocean grid cell
for each of the bearing observation times; that is, the neuron's inputs are the ocean cells the contact would be in if it were
on the path being represented. The simplest neuron function for these correlating neurons is a boolean AND over all its
inputs. A correlating neuron's activation will be 'I' if all its inputs (which do not need to be weighted) are 'I', and '0'
otherwise. Essentially, a correlating neuron will be active if all bearing lines were crossed at the appropriate locations
and times for the track it represents.

Due to the finite input grid resolution, such a network would activate not only the correlation neuron corresponding to
the true contact path, but nearby contact paths as well. Thus, a set of correlation neurons would be active in the network
and another layer of neurons might be needed to determine the best estimate for the contact state attributes of bearing,
range, course, and speed. Figure 2 shows the architecture of the ANN described in this section.

INPUTS OUTPUTS

UTU
NEUR3N NR.ScNS

CORRBELATON

Figure 2. NICE Architecture

Note that the model described thus far is very simple: rectangular input grids, boolean marking of input cells, and
boolean activation of correlating neurons. Clearly, more sophisticated alternatives exist. Polar-coordinate input planes
may better reflect the nature of line-of-sight bearings and bearing errors. Input layer cells might be marked by their
probability in relation to the bearing measurement error. Correlation cells could be real-valued and approximate a least-
squares or maximum-likelihood function. There are certainly many possible enhancements to the simple Neurally
Inspired Contact Estimation (NICE) model.

3. SYSTEM PERFORMANCE

1. A NICE Scenario

Figure 3 presents an observer-contact scenario, where the observer traverses two legs. At eight times, noise-free
passive measurements are made. Assuming propagation mode, contact depth, and ocean bottom depth, the contact must
be at some position on a hyperbola (for this particular sensor) at successive measurement times. With the contact
maintaining a constant course and speed, the speed strip model holds, and a NICE ANN can be used to determine contact
path.

An evolutionary processing of bearings by NICE is shown in figure 4. Each path displayed corresponds to a
correlation neuron that is active. After four observations, the contact state is not observable since the contact could be
either right or left of the observer. Successive observations after an observer maneuver resolve the left-right ambiguity
and lead to an increasingly well defined solution set.

91



I

/ • I

___ 0 7 6 5 ( 3 ?2 5 TO3 2 5

Figure 3. Observer-Contct Scenario Figure 4. Evolutionary Processing of Bearings 5

2. Grid Resolution and The Effects Of Noise

For noise-free bearings, increased grid resolution means increased solution resolution, as seen in figure 5. In this
figure, the same scenario is run through NICE at resolutions of 64, 128, and 256 cells per edge. As the resolution
increases, the sharpness of the solution set increases. Note, however, that the averages for range, course, and speed are
nearly the same for all three resolutions. It would appear that the highest possible grid resolution should be used, but it
must be remembered that the processing required in the correlation neurons goes roughly as the square of the grid
resolution. Thus, there is a trade-off between solution sharpness and processing time.

LI

(a) 64 (b) 128 (c) 256

Figure 5. Grid Resolution 5
For noisy observations, the situation is more complex. Remember that, as in the manual speed strip discussion,

noisy measurements will preclude exact fits. If a high resolution grid is used with noisy data, no correlation neurons will
fire because their linked input neurons are likely to include at least one cell that is not marked since measurement error I
caused the observed btzirng line to miss the cell. However, as grid resolution is decreased, each grid cell covers a larger
bearing range, and thus the appropriate cells are likely to be marked, even by a noisy observation. Indeed, as bearing
noise increases, grid resolution must be decreased to find contact paths. Note that, though solution quality decreases with
noise level, NICE continues to produce good results.

3. Comparison With Cramer-Rao Lower Bound 5
The Cramer-Rao lower bound is a common benchmark used in parameter estimation which places a lower bound on

the variance of an unbiased estimator. Two observer-contact scenarios were presented to NICE and system performance
ws compared to the above benchmark 6 . These comparisons were performed by examining monte-carlo simulations for
the given geometries at various noise levels, The first geometry was poorly observable, and the second moderately.
Normalized mean error and standard deviation values for the esthnates of range and bearing are summarized in table I and
table 2. 1
6 DJ. Ferkinhoff, C.M DeAngelis, K.F. Gong, S.E. Haminel & R.W. Green, "On Training Artificial Neural Networks for

Tracking in the Ocean Environment", Proceedings of Oceans '92, Newport. RI, October 1992
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NICE Range 0.070 0.060 0.014 0.0 NICE Range -0.089 -0.027 -0.088 -0.103

NICE Bearing 0.130 0.150 0.000.210 NICE Bearing 0.190 0.110 0.280 0.240

(a) Mean Error (a) Mean Error

Noise Level 0.5o 1.0ao 1.5 ao 2.0 co] Noise Level 0.5o00 1.0co 1.5oo 2.0 ao
NICE Range 0.123 0.229 '0.335 0.420 NICE Range 0.052 0.100 0.128 0.175
CRLB Ran-Re 0.029 0.059 0.089 0.119 _ CRLB Rane -

NICE Bearing 0.510 0.680 0.920 1.090 NICE Bearing 0.430 0.490 0.750 0.900
CRLB Bearinst 0.147 1 0.294 10.441 10.587 1 CRLB -(b) Standard Deviation (b) Standard Deviation

Table 1. Geometry 1: Normalized Statistics Table 2. Geometry 2: Normalized Statistics

As can be seen, NICE provides comparable performance, especially at higher noise levels. The means are
approximately zero, and the standard deviations approach the CRLB.

4. SUMMARY AND CONCLUSIONS

NICE offers a number of attractive features. Since a bearing line constrains the locus of points where a contact might
be at a given time, different angle-of-arrival sensors merely produce different loci; all are equivalent and can be fused using
NICE. Intermittent data can be accommodated by configuring correlation neurons to ignore the missing data, and the
receptor resolution can be varied to adjust to the quality of the sensor readings, fine for accurate and coarse for noisy. In
addition, the neural network can be executed in a highly parallel manner. Overall, NICE has the potential to function as
a viable contact state estimator.
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ABSTRACT

In this paper we discuss some neural network design issues for a classification problem involving
signal segments of long duration (approximately 100 to 1,000 samples). Some of the drawbacks of
traditional neural net memory structures for long signal segments are mentioned and we introduce

j the gamma memory model, which is particularly suited to store information over long delays. Our
problem involves classification over a very large class cardinality (> 1,000) and we discuss the
impact of this on the neural network architecture and training scheme. In this paper no experimen-
tal results are discussed.

1.0 INTRODUCTION

We are looking into the following problem. Our task is to detect and determine the source (or class) of spe-
cial signal segments from a relatively low-noise background signal. We will label such a special signal segment as a3 signal-of-interest or abbreviated as Sol. The problem is mainly characterized by two difficulties. In the first place, the
duration of the discriminating features of Sol's can be quite long, typically between 100 and 1,000 time samples, and

may vary largely between classes and even within a class of Sors. Secondly, the number of different classes for this

problem is very large, usually greater than 1,000 categories, and to complicate matters, new signal classes may be
added after the classification system has been installed.

Detailed domain knowledge about the discriminating characteristics of the Sol's is not available. However,
we do have access to a large database of representative examples. From these considerations we decided to imple-

ment the essential part of our system in an adaptive neural network.

In this paper, we describe our system design where particular attention is paid to deal with the aforemen-
* tioned difficulties. At this time, no experimental data ard results are released.

5 2.0 COMPUTING OVER LONG DELAYS IN NEURAL NETWORKS

Consider the following scenario. Let u(t), t=l ,....T, where T is rather large, be a signal-of-interest, u(t) is a
member of one of L classes. We intend to design a computational network structure that takes u(t) as input and pro-
duces L signals y,(t), i-l,...,L, as outputs. The activity y,{t) holds a current (at time t) probability measure that u(t) is a

member of class i. Ideally, if u(t) belongs to class i, then yT) is high whereas y/T), i * i, have low values. It is clear5 that yi(T),i-1,...,, is a (non-linear) function of the entire history of u(t), that is, yj (T) = fi(u (t;l < t -T) ;w),

where w holds a set of parameters.

9
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1
In order to achieve this computational functionality, nodes in the network ought to be able to compute 3

functions over the history of activations of (other) nodes. Now let us abstract the classification problem to two

communicating nodes in a neural net (see Figure 1(a)). We want y() to compute a parametrized function of a his-

tory trace of u(t). A popular network structure which implements such a function makes use of afeedforward I
tapped delay line, that is,

y (t) = .oWkU(t-k). eq.) 1
The tapped delay line structure is depicted in Figure 1(b). For simplicity we have omitted the possible

non-linear relation between u(t) and y(t). In this formulation, the history function is parametrized by the weights

wk, k=O,...,K. The number of weights grows proportionally with the memory depth. For long signal segments,

that is, for large T. we need a deep memory which translates into a large K, the number of taps or memory order,

and therefore the number of weights will be large as well. From the statistical literature we know that overparam-

etrizing a function leads to increased error variance, which causes decreased performance on a generalization
data set (Geman et al., 1992).

I

gtt) y(t) I 4 . y(t) (c)6_I 6__ D
) W )( y(t) uP(t) W 0 -OI) I y(t- ()

D WK D WK

Gamma Delay Line3

,'t) =wt hO(t -k)

(b)l y () 0 h Wkask~ M
"kht W = Auk -(1 (1 + k(

Figure I. (a) y(t) is a function of a history trace of input u(t). (b) A common network struc- 1
ture makes use of the feedforward tapped delay line. For this structure the memory depth D is
fixed and equals the memory order K. The resolution R is fixed and equals I time step. (c) The
leaky integrator computes a recency gradient over u(t). Here D=1I(1.t) and R=1-p. (d) The I
gamma memory, a tapped delay line of self-recurrent nodes combines favorable properties of
both the feedforward tapped delay line and the self-recurrent node. For the tapped gamma
delay line, we have a parametrized memory depth D =KI(1-j-±) and resolution R= l-.1
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An important question looms: Can we design a computational network structure with variable memory

depth while keeping the number of weights constant? In other words, can we uncouple memory depth from

memory order? The answer, of course, is yes (otherwise we wouldn't have brought it up). Variable memory depth

can be produced by recurrent networks. An important example concerns thefirst-order sef-recurrent node or

leaky integrator, which is implemented by (see Figure l(c))

y(t) = jgy(t- 1) + (1- W)u(t- 1). eq.2

Let us compute the mean memory depth of self-recurrent nodes. Observe that eq.2 can be written as
t-1It-l-ku

y(t) = (I-IW) to -O u(k) eq.3

k -10 g (t -k) u M

where g(t) = (1 - ;t) tL'-1 . In this framework, y:t) can be interpreted as computing a history trace of u(t)

where g(t) is the (normalized) memory kernel. We compute the mean memory depth of the memory kernel g(t) as
D = ý.0 tg(t)1 eq.4

Thus, the memory depth of the leaky integrator increases for increasing values of t (<1). The case g--O reduces
the leaky integrator to a unit delay operator, whereas gn=l-e with e very small leads to a very deep memory. The
cost of increasing memory depth is a reduced temporal resolution. If we define the resolution R as the number of

taps (or state variables) per time step delay, then the resolution for the leaky integrator is R=l/D=- 1-t.
Let us recapitulate this section. In our problem we want to compute parametrized decision functions on

signal segments u(t), t= I,...,T, where T is large. Feedforward tapped delay lines bring along an excessive number
of free parameters (proportional to T), which leads to suboptimal performance as the decision function will be

over-parametrized. The leaky integrator can modify its memory depth but it has only one variable y(t) available

to store a history trace. In order to be able to independently adapt memory depth and resolution, we need at least
two adaptive parameters. The leaky integrator however has only one adaptive parameter (;t) available to adapt
the two memory functions depth and resolution.

SyK 1

•:.•....•..-.:.:-::-.:- ......---:. ......-...- ... , ..........-....•.:.::::

Table I- Relations between memory parameters order K. decay gt and memory character-
izations depth and resolution.

An adaptive memory structure such as the gamma tapped delay line is best suited for our problem. The

gamma delay line consists of a cascade of leaky integrators with the same decay parameter gt (Figure I (d)). Thegamma delay line generalizes the tapped delay line and the leaky integrator into one parametrized structure. As a

result, the gamma delay line has two parameters available, memory order K and decay ga, in order tocontrol

depth and resolution. Thus, an uncoupling between depth and resolution can be achieved. Table I displays how
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1
the memory functions depth and resolution are related to the memory parameters for the various memory net- 1

work structures. More detailed information on designing neural networks for temporal processing and in partcu-
lar on the gamma neural network can be obtained from de Vries (1991) and de Vries and Principe (1991).

3.0 TRAINING STRATEGY

The second issue of this paper concerns a trairing strategy that handles a large class cardinality
(> 1,000). Our first design choice is that we create a new network for each signal-of-interest. This in contrast to
one neural network that detects and classifies a large number of Sors. Advantages of the former architecture 3
include incremental trainability and capacity. If we have a net which looks for more than one Sol then each time
we adapt for a particular Sol, the prototypes for all other Sol's are distorted. Obviously, there is a limit to how

many different Sol prototypes one net can contain before the "cross-talk" destroys everything. So if we want to I
add another Sol class to the vocabulary, all Sol prototypes are altered, and performance may drop drastically for
Sol's that were previously learned. This problem can be avoided if we use one net per Sol. When we add a Sol,

we add a net, and we can design a training strategy that does not alter Sol prototypes when that is not desired. 1
Assume that we have 500 classes and 50 exemplar sequences per class available for training. For any

class, this implies that we have only 0.2% positive examples and 99.8% negative examples. If we would use the
common approzmation-based training strategy where the desired signal is high (say one) for a positive example
and low (zero) for every negative example, than the desired signal for each of the output nodes equals zero in
99.8% of the training runs. Very good performance on the training data set (99.8% accuracy) would be obtained 3
if we force all outputs to zero at all times, by for instance setting all weights to zero and the thresholds high.

Obviously, this training algorithm doesn't work for large class cardinality. Therefore we use a decision-

based training strategy, which effectively reduces the cardinality of the training set for each class. Decision- 1
based training, much akin to the original perceptron learning paradigm, proceeds as follows:

1. if the correct network wins, do not adapt any weights. (In other words, do not change a winning

team).
2. if net i wins, but net j is the correct net (desired to win) then adapt as follows:

a. adjust the weights for networkj so as to increase its output next time for this input pattern, and,

b. adjust the weights for network i so as to decrease its output nexu time for this input pattern.

This strategy has been tested extensively at Princeton University in S.Y. Kung's laboratory on a variety 3
of classification problems and indicates better performance than approximation-based adaptation procedures.

A block diagram of our system architecture is depicted in Figure 2. Not discussed in detail in this paper 3
are the pre-processing stage and the decision function. The reason for this is that we anticipate rather common-
place implementations of pre-processing and decision-making for our problem. Our data suggest a pre-process-

ing stage consisting of a bank of bandpass filters (or short-term Mft) augmented with some statistical features such
as number of peaks per time unit. A simple maximum selector implements the class decision making.

4-0 CONCLUSIONS 1
We have discussed the problem of modelling long delays in neural networks for a particular classifica-

tion problem. It was argued that the gamma memory structure offers a more flexible temporal representation than 1

I
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feedforward tapped delay lines and leaky integrators. When the class cardinality is large, we recommend a sepa-

rate network for each class and a (pereptron-like) decision-based training strategy.

S-- gamma net
classifier I

decisionS~ function

u roesin class

Figure 2. Block diagram of system architecture. Special features include gamma memory
for retaining information over long delays, one network for each class, and decison-based
training.
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Abstract
A hybrid opo-electronic neural network using light emitting diodes, mulnimode

waveguides, fixed pattern masks, and a linear photde or is being analyzed, built, and demon-
strated. The compact design, low power requirements, and high computational rate make this
device attractive for a variety of target classification problems.

1.0 Motivation for Optical Neural Networks

Artificial neural networks (ANNs) we attractive for target classification of image data fom visible, near
infrared, multispectral, laser radar, synthetic aperture radar (SAR), or forward looking infrared (FLUR) sensors
Artificial neural networks can be used to preprocess scene data (e.g., edge enhancement) or segment an image
(e.g., multispectral terrain classification). Preprocessed or segmented data from multiple sensos can be fused via
sn ANN to improve tagt recognition.

The high input dam rates (l0s data valueu/sec) are favorable to optical neural network processor. Optical
artificial neural networks which perform paern classification algorithms have undergone extensive theoretical
and experimental analysis. These optical arhitectures include the Hopfield network, nearest neighbor netwotks,
holoraphic architectures, and multi-layer feed forward architectures. To minimize physical requirements (size
md weight) optical processing architectures have been developed which rely on solid-state and integrated optics
Mcluoo. Thes architectures cam be classified in terms of electronic(l) or optical(2) inputs with either elec-
tronicd or optical(l) weight masks. The weight masks can be variable or fixed depending on whether training is
dam on cr off line based upon the application requirements. Systems that train on-line with real scene data require
variable, programmable weight masks. The disadvantage of this approach is that increased power, packaging si,
sad dynamic rang of weight values is required to adequafely train the neural network.

We have developed an optical artificial neural network which provides high system throughput with mini-
mal size, weight, and power. To demonstrate a new arem ANN processor concept we am currently building a low
power, optical-input, fixed optical weight artificial neural network scene segmentation processor for multispectral
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classification. 3
2.0 Kobonen ANN for Multispectral Image Segmentation

The Kohonen artificial neural networkO3) consists of a single input layer connected to a single output layer
with each node having an associated neighborhood of other output nodes. For each input there is a single "win-
ning" node which is the best match to the input vector. Unsupervised learning can be used to train the seif-orga-
nizing Kohonen neural network. The Kohonen network is trained by presenting a member of the training set to the I
network and determining the "winning" node with minimum error between node weights wij and the input vector

xi (typical error metrics include Euclidean distance and inner products). The weights wj of all nodes in the neigh-
borhood of the winning node are then updated and a new member of the training set is presented. Through succes-
sive iterations the neighborhood and the change in node weights are reduced and the system performance
improves until the required level of system performance is achieved. The node weights specify clusters that reflect
the probability density function of the input training vectors.

The Kohonen artificial neural network can successfully segment an agricultural image from a multispectral
sensor(4). We chose to use an optical neural network processor to implement a Kohonen network and process mul-
tispectral data for image segmentation. We have performed extensive studies to gain a better understanding of the
numerical precision required of a hardware implementation of a neural network multispectral classifier. We con- I
cluded that adequate precision in the node weights is most important for reliable performance, and for this prob-
lem 6 bits was the recommended minimum precision. The necessary precision is most likely highly dependent on
the particular neural network application and similar experiments must be perfomed prior to any specific hard- I
ware design. Our optical processor was designed to achieve this precision. A 5 x 5 Kohonen ANN prototype iscurrently being fabricated.

3.0 Optical Device Design and Fabrication

The optical ANN performs a vector-matrix multiplication of the input vector with the weight matrix. A
schematic diagram of the optical ANN based on a single layer Kohonen self organizing neural network is shown
in Fig. 1. Device construction is based on microfabrication technology. The data is input by LEDs into multiple
multimode waveguides (rows in Fig. 1). The weight masks are area-modulated coupling of light out of the
waveguides. This light is then summed by a linear army of photodetectors (columns in Fig. 1) to give the output.
For increased reliability with compact, low power operation, all training is performed pre-mission and the neural
network weights values are fixed. A parallel addressed LED emitter array (100 data values) operating at a modest
1 MHz rate results in an input data rate of 10 s data values/sec. The computation rate for a single layer Kohonen

sops).
network with 100 weights is lx 100 operations/sec .The dev3ce volume is on the order of 0.5 cm3 resulting
in a computation rate/unit volume of 2xI10° ops/cm and power dissipation of 0.5 W/cm3 .

To demonstrate the concept we relied on commercially available LED sources and detectors. The vecton
input is provided by an LED (ROHM JA3012CL-01) army derived from an LED print bar with an 84.6 micron I
pitch, operating at 0.66 microns, with an active area of 50x65 microns2 . Light is coupled through an erect imaging
SOLFOC way into a multimode dielectric filled waveguide (50x65 microW) interconnection mechanism fabri-
cated in intrinsic silicon. Light is coupled out of the guide through an area modulated weight matrix which has
been etched, into the dielectric filled guides. The etched area is proportional to the weight matrix and was deter-
mined off-line via the multispectral classification simulation. The weight matrix mask was fabricated to 8 bit
accuracy using e-beam photolithographic techniques. A commercially available photodetector (Reticon EG&G I
TB series) with an element spacing of 50 microns and an aspect ratio of 50: 1 is used to sum the output of the inputvector with the weight matrix.

The ANN electronics provides interfaces between the control computer and the electro-optical components
of the experimental optical ANN system. The commercially available LED print bar does not provide multi-level
inputs. To demonstrate the ANN, a pulse width modulation circuit was designed which can provide 5 bit input at a
data raie of 100 KHz. The LED bar is controlled entirely by the computer, and the ANN electrotics provide only
buffering of control signals. For the diode sensor array, the ANN electronics generate a time delay and a burst of
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Detector

*SIDE VIEW

I Fig 1. Optcal artiicial neural network (ANN).

ito digia values to be prcse by the compue.

The sigral-to-noise (SNR) of die Reticon aurmry output is a funtinof inputI power density at the pilotOSite
xan the effective integration time. There are four primary noise sources to be considered for the TB serie Reticon

I ~ amay. These ame K'TC noise (5M0 elecnraii at room tempersure), amplifier read noise (100 elections at room tem-
perftr), dark cuirret noise. and signal shot noise. For a SNR of" 3.5 the average input intensity is I nW/cm2, The
Ilarest poiss'ibe weight mask (40x 10 mitrings) with an output efficiency of 0. 1% results in an emission intensity

I of 0.664 micfowmsaým" arid an output dynamic range of 664: 1.

'lhe firk, ation of the waveguide arrmy uses microhibrr, aon technology. Thermal oxide (1.2 microns) is
gfrown in intrinsic < I I0> silicon. The silicon is pattened with the waveguide mask to matchde pic an element

Iwn of th LED emitter army (84.5 micron pitch. 60% duty cycle). The oxide is ethe with stndr buffered
oxide etch and the intrinsic silicon is etched to a depth of 65 micron with anixxropic wet etchLu. Thermal oxide
is then grown to a thickness of 1.2 micrnms on all etched surfaces forming an Si02 cladding layer of index 1.46.
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I
Ultra-violet curing Norland optical adhesive of refractive index 1.56 is used to fill the guide and wafer polished
flat to form a clean waveguiding structure. Positive photoresist is then used to panern the weight mask. U

We are currently fabricating the optical ANN structure for a multispectral segmentation algorithm. Experi-
mental testing of the planar saructure will be performed to determine channel cross-talk and dynamic range limita-
tions of the weight mask. The ANN processor performance will be determined under a variety of input conditions.
These results will be compared to digitally simulated results for a Kohonen multispectrl segmentation applica-

4.0 Summtary

We have presented a new approach to optical artificial neural network processing based on waveguide
optics technology which minimizes system size and power requirements while maximizing throughput. Our con-
cept demonstration relies primarily on commercially available off-the-shelf hardware (LED sources, photodiode
detectors) and easily fabricated multimode waveguide technology. We envision that this technology will provide a
fault tolerant, rugged, compact approach to decrease the computational burden of digital processors for automatic
target classification problems. This experimental approach is limited due to the serial nature of the LED source
but provides a means to test the viability of the concepL With specialized parallel input/output hardware, operat-
ing at modest rates, computational rates of 2x101 0 ops/cm3 can be achieved dissipating 0.5 W/cm 3 of power.
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(U) ABSTRACT

(U) We describe the SAHTIRNTM (Self Adaptive Hierarchical Target Identification and
Recognition Neural Network) system. SAHTIRNTM combines three neural network models
for automatic target recognition (ATR): (a) an early vision segmentor, (b) a hierarchical
feature-extraction and aggregation recognition system based on the Neocognitron
architecture, and (c) a multi-layer perceptron for pattern classification. Of these three
models, the Neocognitron-based architecture has undergone extensive enhancements over
previous litcrature reports based on unpublished in-depth analyses. We summarize our
recognition system modifications and provide test results.

(U) The recognition core of the SAHTIRNTM system is a hierarchical, distortion-tolerant
feature extraction and aggregation model. Feature extraction and aggregation are both
self-organizing and undergo a training phase. Features important for target
discrimination within expected scenes are learned during this training period. These
primitive features are then aggregated by the hierarchical structure, forming a
compressed representation of the input image. SAHTIRNTM learns to extract the spatial
relationships of the primitive features, enabling identification of spatial structures of
scenes and targets.

(U) An ATR system must have tolerance to such scene dynamics as clutter, occlusions and
obscurations (bushes, trees, rock, hills, roads, dust, etc.), perspective changes, target
signature and background thermal variations, target shift, rotation due to missile roll (both
skid to turn and back to turn). Performance under each of these variations are further
subject to differing detector resolutions and signal-to-noise ratios. We provide test results
of the SAHTIRNTM ATR system against ground vehicular targets, systematically verifying the
recognition abilities against the scene variations listed above. We used both computer and
terrain board modeled infrared (IR) imagery in our evaluation, including imagery from
DARPA's Artificial Neural Network Comparative Performance Assessment study.

(U)We discuss the Datacube hardware implementation of SAHTIRNTM. Recent benchmarking
indicates a four Hertz processing capability using a single i860 processor. Current efforts
involve hardware development leading to a speed increase up to two orders of magnitude.
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U
1.0 (U) INTRODUCTION 3

(U) We introduce SAHTIRNTM (Self-Adaptive
Hierarchical Target Identification and Recognition Neural
Network), a new neural network architecture resulting from
unpublished theoretical "neocognitron"1 analysis. The
neocognitron is a hierarchical multilayered neural network
with deformation-tolerant pattern recognition potential. The ..

neocognitron has received much attention.2'314

(U) We summarize features of our neural network as a
result of in-depth analysis of the neocognitron and its
unsupervised learning algorithm. The breadth of the
analysis spans clustering methods, signal processing, hyper-
dimensional geometry and information theory. The
motivation for this research is to realize the potential of a I
hierarchical multilayered deformation-tolerant family of
neural networks. Detection

(U) Based on analysis, we provide modifications,
generalizations, and improvements to the neocognitron for
elimination of ad-hoc parameter settings. In our new neural
network, parameter settings are learned from the input data.

(U) We implemented the SAHTIRNrm system in
realtime DATACUBE compatible hardware for field test
preparation. Test results of this new architecture for
automatic target recognition (ATR) using infrared (IR)
imagery are given. Figure 1 shows the ATR application at
a high level. This paper focuses on processes within the I
feature extraction and aggregation component of Figure 1.

See our earlier paper for more information on the remaining
components. 5  ISPrprocessing/

SegmentationI
I (U) Fukushima, K., "Neocognitron: A new algorithm for S

pattern recognition tolerant of deformations and I
shifts in position." Pattern Recognition, Vol. 15. ,
No. 6, pp. 445-469, 1982. Fature Etato

2 (U) Barnard, E. and Casasent, D., "Shift Invariance and andAgg
the Neocognitron," Neural Networks, Vol. 3. No. 4,
pp. 403-410, 1990. i

3 (U) Johnson, K., Daniell, C., and Burman, J., "Feature Classification
extraction in the neocognitron, " IEEE International
Conference on Neural Nets, San Diego, CA, 1988. (UNCLASSIFIED)

4 (U) Menon, M. and "' inemann, K., "Classification of
patterns using a self-organizing neural network," Figure 1. (U) The SAHT1RNTm ATR consists of four
Neural Networks, Vol. 1, pp. 201-215, 1988. parts: target detection, preprocessing and segmentation of

regions of interest, hierarchical object pattern recognition,and classification.

5 (U) Daniell, C. E., Kemsley, D. H., and Bouyssounouse,

X., "Comparitive evaluation of neural based versus
conventional segmentors," SPIE Automatic Object I
Recognition, Vol. 1471, 1991.

I
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2.0 (U) NEOCOGNITRON REVIEW Layer

(U) Here, relevant aspects of the neocognitron are ' 2 L-yr

briefly reviewed. For a complete description of the
neocognitron, see the work of Fukushima.6

(U) As shown in Figure 2. the neocognitron is a
hierarchical network. The initial stage of the network is the O
input layer called UC0, and consists of a two-dimensional
array of pixels. After the input layer, the neocognitron us l US2 uC2 us3 UO

consists of a number, I, of pairs of layers each consisting of
one US-layer and one UC-layer. Each layer contains of a (UNCLASSIFIED)
number of planes, K1, consisting of a two-dimensional array
of S-cells or C-cells. The S-cells receive their input from Figure 2. (U) The hierarchical structure of the
the C-cells in the preceding layer. The C-cells receive their neocognitron. Planes in higher layers extract more complex
input from the S-cells in the same layer. features by hierarchically agg;regating features from lower

layers. Each plane learns to extract a specific feature.
(U) The purpose of each S-layer is to detect the

presence of a particular pattern of activity in the preceding
C-layer. This is enabled by a specialized two dimensional
mask associated with each S-plane, called an a-mask. Each ' Fr' m F-l r- i r ' 'i
S-cell in a given plane is the result of correlation by the [I] ED M M 0] E] 10 LI M
same a-mask but centered at differing positions in the
preceding C-layer. (a)

3.0 (U) NEOCOGNITRON ANALYSIS IS B IS B 1
RESULTS

(U) Our neocognitron analysis leads to enhancements of
Fukushima's original architecture.7  We discuss five (UNCLASSIFIED)
findings as a result.

Figure 3. (U) Representative training receptive field
(Lb Detection Tolerance Mismatch patterns form the correlation masks for two different features.

In (a) there is law feature variance, but the feature detection
will become more tolerant during training. Conversely, in

(U) The feature detection tolerance becomes mismatched (b) there is high feature variance, but the feature detection
with feature variance during learning. The situation is will become Jles tolerant during training.
illustrated in Figure 3. Our unpublished analysis proves the
neocognitron adapts the sizes of the feature decision norm of the correlation masks during training, imprinting is
boundaries in the wrong directions by becoming more observed in the neocognitron. This phenomenon has
tolerant to low variant features less tolerant to high variant sometimes been called the Pinnocchio effect. We discuss
feanures. solutions to imprinting below.

(M,.mifinting MT Leaming Based on FreAuencv of Occurrence

(U) Imprinting is the indelible effect the first training (U) Since the maximum responding S-cell is used to
patterns have on the correlation masks. This is clearly update a feature, the neocognitron learns the features in the
harmful during unsupervised learning. Due to the increasing training images that occur most often. These features may

or may not be the most discriminating. It is often the case
that a discriminating feature for a particular class will only

6 (U) Fukushima K.. "Analysis of the process of visual occur once for each image in the class and will not be

pattern recognition by the neocognitron." Neural present in any of the images from the other classes.

Networks, Vol. 2, pp. 413-420. 1989.

S(U) Hecht-Nielson, R., Neurocoinmuting. Addison-Wesley
Publishing Company, Redwood City, 1991.
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(U) The new neural network presented in this section I
(U) The c-mask weights the pixels during the feature differs from the neocognitron the following ways:

detection process. Traditionally the values of the c-mask are a)()Avoids imprinting, the indelible effect of the first I
set in an ad-hoc fashion such that they decrease training patterns, during unsupervised learning. o
monotonically from the center of the c-mask. This ad-hoc
setting is weak for two reasons: b) (U) Learns discriminating features rather than frequently U

occurring features by maximizing a mutual
a) (U) by using the c-mask, an implicit assumption is information-theoretic measure between features and

made that the pixels in a feature are uncorrelated classes.
with one another, and c

b) (U) the c-mask values are preset and are not a function c) (U) Generalizes c-mask weighting to C-matrix
of the training images. weighting to obtain correctly shaped and oriented
(MA-of P mtheraiigimaes. feature detection surfaces. 3

(U) Ad-hoc Parameter Choices

(U) Traditionally, a host of parameters must be chosen Traditionally, the c-masks were set ad-hoc.
to use the neocognitron for a particular pattern recognition
problem; such as, the number of layers, number of planes co (U) Computes the r parameter from the training
per layer, stopping criteria during training, decimation rates, images. The r parameter determines the angle of
mask sizes, c-mask and d-mask settings, and r parameter aperture of the hyperconic decision surface cone. I
values. Traditionally, the r parameters were set ad-hoc.

(U) We summarize enhancements that eliminate these e) (1.) Determines the number of feature detectors in each
ad-hoc choices by learning the values of the parameters from layer during learning based on the number of Ithe training images. discriminating features learned from the training

data.

4.0 (U) MODIFICATIONS LEADING TO A
NEW NEURAL NETWORK (U) Feature learning asymptotes to useful,

discriminating features rather than requiring an ad-
(U) We present extensions to the neocognitron hoc stopping criteria for learning.

architecture based on the findings in the preceding section. U
These modifications fall in two categories. g) (U) Estimates an r parameter and C-matrix for each

feature detector plane instead of one r parameter and
(U) The first category of changes are relatively minor, C-mask per layer.

keeping the flavor of the neocognitron's unsupervised
learning. These are: h) Estimates the scale and distortion allowed in the

aggregation process (i.e., learns the d-masks,
number of layers, and eliminates the need for

a) (U) making the feature detection surfaces explicitly decimation). I
hyperconic, and 5.0 (U) RESULTS AND HARDWARE

b) (U) using unsupervised competitive clustering methods IMPLEMENTATION I
to solve the imprinting problem. (q Recognition results based on our developments are

(U) The second category of changes, on the other hand, shown for an ATR application using simulated infrared (IR)
makes a break with the traditional neocognitron architecture imagery. Results obtained use a fully automatic I
and unsupervised learning. The result is a new neural preprocessing system. We performed two experiments,
architecture. The features of this are highlighted here. In testing SAHTIRN'm's ability to discriminate between three
summary, the new neural network and supervised batch different vehicles (e.g., tanks, trucks, helicopters).
learning algorithm optimize the feature detection and
aggregation processes enabling the potential for deformation- (U) In the first test with vehicles at a range of 4.5 km,
tolerant pattern recognition. we used 30 training and 30 test regions of interest. Results

are 90% correct classified, 10% misclassified, and 0%
rejected.
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(U) The second test used 66 images of vehicles (at
ranges from 3.5 to 4.5 km) and additional clutter (i.e., no
vehicle present) images for training. Performance results for
66 test vehicle images are 92.4% correct classification, 4.6%
misclassi~trion, and 3% rejected.

(U) The SAHTIRNTm system is implemented in
realtime DATACUBE hardware and prepared for field testing.

6.0 (U) CONCLUSION

(U) We presented a new neocognitron-based neural
network architecture that robustly recognizes patterns. The
goal of our research is to develop a theoretical understanding
of the hierarchical feature extraction and aggregation
capabilities of this neural architecture. We provided
recognition results of this new architecture for ATR using
IR imagery.

(UNCLASSIFIED)

Figure 4. (U) Our SAHTIRN T
m Datacube

implementation currently runs at 4 Hz on one i860 processor.I Shown here are: 1) a SUN controller workstation monitor

(lower left), 2) the Datacube chassis (lower right), a&.. 3) a
video monitor for 1/0 display (top).
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ABSTRACTI

It is shown that neural networks can be used effectively to classify areas of a
satellite image of the earth according to image textures such as forests, fields, and
buildings. Such classification can be useful in the exploitation of large image
databases. The Spline-Net neural network architecture was found to provide an
efficient solution to this problem using a modest amount of training data.

INTRODUCTION

In the complex world of interactive image and signal exploitation, large amounts of data arrive every day, much of it
requiring immediate attention. It is the analyst's job to scan this information and determine its meaning and
significance. In order to assist the analyst with the complex and time-consuming task of exploiting image databases,
computer-based tools are needed that can search images for relevant features and content.

In many applications, one is looking for those images from a large set which contain particular objects. To
simplify the process, it may be useful to extr a subset of the image database which is relevant to the target being
sought. For example, if one is looking for ships, only those images containing bodies of water need to be looked
at. If airplanes are the targets, images containing large paved areas (runways) would be the relevant subset. Since a
body of water or a paved area that can be used as a runway does not have a well-defined shape, one cannot use
standard pattern matching techniques to find iL However, those areas in an image do have certain visual "textures"
that can be used to distinguish them from surrounding land. Textures are ilso important in themselves for studying
environmental features such as forests or fields of crops.

IMAGE TEXTURE CLASSIFICATION

Visual texture is produced by repetitions of small-scale elements or features in a scene. By "small-scale" we mean
small enough that they cannot easily be perceived as individual objects. The statistical distributions of these
elements or features may help to distinguish one texture from another. A region of one texture has a certain
umifotmity of appearance. Where two distinct texture regions meet, there appears to be a sharp boundary curve, even
though the physical change may be gradual. Perceived texture may be independent of viewing distance, because the
elements occur at many different scales. For example, a forest viewed from two different altitudes is easily
recognizable as such. However, when one gets so close to a texture region that one can see the individual elements
(e.g. trees) the forest texture is no longer seen.
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A person can look at an image of an area on the earth and quickly and easily distinguish between forests, fields, I
bodies of water, towns, etc. Many models have been proposed for how the human brain perceives texture [I].
Machine vision systems have been developed which can find the boundaries between texture regions in some cases.
However, for applicability to a wide variety of problems, it is useful to have a system which can learn from I
examples without being dependent on a particular model. Neural networks are well suited for this sort of pattern
classification. Detailed knowledge of the process which generated the training data is not required for the network to
do a good job. Neural networks are also appropriate since they can divide an input space into disjoint regions with
nonlinear boundaries and can rim very quickly when implemented in computer hardware.

To construct a network for texture classification, we must first preprocess the image to reduce the amount of data. If
every pixel in a 1000 x 1000 image were used as an input to a network, the size of the network would make training
impractical. The first step is to divide the image up into smaller blocks, each of which is to be assigned to one of a
fixed set of texture classes, or to none of them. The network architecure will have one output node for each of the
classes. A block will be assigned to a class if the corresponding output node has a high response to the input data
respresenting the block while all the other output nodes have a low response. The pixel values in the block must I
then be processed to produce a small number of inputs for the network. A good method of doing this involves the
use of "oriented filter pyramids." A multiresolution representation of the data is created by passing it through a
series of two-dimensional linear bandpass filters with different orientations and scales. Each filter acts as a feature
detector on the whole block. These filters can be computed very efficiently using the pyramid algorithms of Burt
[2]. Bergen [1] explains why this process preserves the significant information required for texture perception. The
energy in the output of each filter becomes one input for the neural network classifier. A small number of these
energy measures can result in good classification with a simple network that can be trained quickly.

Spline-Nets [5,6] are part of a larger effort to develop neural network architectures and training methods tailored
specifically for image processing and signal exploitation systems [3-4]. Spline-Nets are generalized versions of
Multi-Layer Perceptrons (MLP) that incorporate B-Spline connection functions into the network node computations I
in an attempt to trade-off additional hidden layers for node complexity. The overall effect is to combine the fast
learning and computational efficiency of strictly local network architectures with the scaling and generalization
properties of standard MLPs.

In a standard MLP, shown in Fig. 1, the connection functions that relate the output or activation of one node to the
input of another is simply a linear function with the slope equal to the value of the weight.

X1 2 I

Figure 1. Standard Multi-Layer Perceptron
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Standard Multi-Layer Perceptions (MLPs) can be represented using node equations of the form

VIZ-1

j-0

where hL is the number of nodes in layer L and the c• are linear connection functions between nodes in layers L and
(L-I) such that

V tiYJ~i(2)

a(.) is the standard sigmoidal nonlinearity, yV-' is the output of a node in layer L-1, y0L' 1, and the w4 are

adjustable network weights. Some typical linear connection functions are shown in Fig. 2. CI corresponds to a
threshold input.

CL CL
13 11110I o01
IT -1y It Y

Figure 2. Typical MLP Node Connection Functions

Spline-Nets generalize this concept of connection functions by representing them using splines (piecewise
polynomials). This is allows more effective connection functions (e.g. piecewise linear, quadratic, cubic, etc.) to be
formulated. The corresponding B-Spline MLP (Spline-Net) is derived by redefining the connection functions of eq.
(2) such that,

k

This produces a more general neural network architecture (known as a Spline-Net) that has node equations of the
form,

OUi-i
Y at. I ' ff _12:CR I (4)

Jul 1.Feio-Z~ 6 jLi--I)I-

The are(yj a B-spline receptive field functions [5,61 of order n and suppon G, while the a rethe SplineNet
weights. The order, n, corresponds to the number of coefficients in the polynomial pieces. For example, linear
splines are of order n=2, whereas cubic splines are of order n=4. The advantage of the more general B-Spline
connection functions of eq. (3) is that it allows varying degrees of "locality" to be added to the network computations

since network weights are now activated based on the value of yj-. The w are modified by backpropagating the
output error only to the G weights in each connection function associated with active (i.e. nonzero) receptive field
functions. The LV'-ayer weights are updated using the method of steepest descent learning such that,
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WL =WL +Ple1 LyL(l~yiL)B.cj0 )(5

where ei is the output error back-propagated to the i'h node in layer L and b is the learning rate [5,6]. In the more 3
general Spline-Net formulation of eqs. (3-5), each node input has P+G-1 receptive fields and P+G-1 weights
associated with it, but only G are active at any one time. P determines the number of partitions in the input space
of the connection functions. Standard MLP networks are a degenerate case of the Spline Net architecture, as they can
be realized with B-Spline receptive field functions of order n=2, with P-1 and G-2. Due to the connectivity of the
B-Spline receptive field functions, for the case when P>A, the resulting network architecture corresponds to multiply-
connected MLPs, where any given MLP is active within only one hypercube in the input space, but has weights that

am shared with MLPs on the neighboring hypercubes. The amount of computation required in each layer of a Spline
Net during both learning and funiction approximation is proportional to G7, and independent of P.

Formulating the connection functions of eq. (3) with linear (n=2) B-Splines allows connection functions such as
those shown in Fig. 3 to be learned. I

LCL C6L
11 ,2 ,11

- I

Figure 3. Spline Net Connection Functions Using Linear B-Splines (n=2)

The connection functions shown in Fig. 3 have P--4 partitions (5 knots) on the interval eJyf" e [0,1]. The number U
of input partitions, P. determines the degree of locality of the resulting function approximation since the local shape
of the connection function is determined from the current node input activation interval. For the linear splines
shown in Fig. 3, each connection function partition has associated with it two network weights.

Initially the Spline-Net connection functions have two knots, one located at 0 and the other one at 1, making them
equivalent to those found in a standard MLP. During training, additional knots and weights are incrementally
introduced into the connection functions. This is done by using a bifurcation schedule (5,6] which splits each U
partition in half and reintializes the network weights such that the shape of the connection functions before and after
the split look the same. The bifurcations occur when the slope of the mean-square-error curve drops below some
threshold value. The overall result of this type of training is to carve-out coarse global features first, then capture
finer and finer localized details later, thereby automatically matching the complexity of the network design to the I
complexity of the problem. This not only improves generalization, but reduces the amount of training required to
obtain a given level of performance. Use of a bifurcation schedule also simplifies the user interface by making the
nunber of nodes in the hidden layer the primary parameter specified to obtain an acceptable network design. U

TEST PROBLEM

To test the approach described above, we used data from satellite images of the earth and sought to classify regions as I
having one of three types of texture: forests, fields, or buildings. To create a training set, areas were chosen by
hand, from a number of images, that were in each of the three classes. For each class, a mosaic image was formed
consisting entirely of examples of that class. Each training example was created by processing a 32 x 32 pixel I
block with the oriented filter pyramid as shown in Fig. 4.

I
I
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Figure 4. Preprocessing of image blocks to create network input.

'1The pyramid consisted of four scales, differing by a factor of two, and four orientations differing by 45*. Each of the
three mosaic images was 512 x 512 pixels so there were a total of 256 training examples for each class.

TEXTURE CLASSIFICATION RESULTS

Classification of terain textures similar to those found in the satellite pbotograp of Fig. 5 were conducted using the
Spline-Net architecture shown in Fig. 6 having linear B-Spline connection functions with support G=2. one hidden
layer containing 8 hidden nodes, and 3 output nodes. Each of the network output nodes corresponds to one of three
textres in the satellite image: forests, fields, or buildings. Spline-Net training was accomplished using the
"vmilla" beck-prop learning rule of eq. (5) with 0 - 1/(2P). The connection function weights were initialized in each
node such that the resulting connection functions were continuous linear functions with arbitrary slope. During
training, the connection functions were made piecewise linear by bifurcating all partitions (splitting them in half)
aftkr every 100 training epochs. An epoch for this problem consisted of a sequence of 768 training examples (256
for each texture) and the particular order of the exemplars in the training set was reshuffled after every epoch. The
rawson for gradualy increasing the connection function input partitions during training is to improve the network
generalization capability and increase the learning speed [5,6]. Although the effect of such partition splitting
effectively doubles the total number of weights in the network, it has no effect on the actual number of weights used
in comipting a network output due to the finite support (nonzero over only 2 adjacent partitions) of the linear basis

The results presented in Figs. 7-11 were generated by training the network shown in Fig. 6 with a total of 700*768
examples. The training of the SpUne-Net of Fig. 6 was begun by initializing it as a standard MLP with P=1.
Figure 7 shows the percent of textures correctly classified by the network, and Fig. 8 shows the corresponding
learning curve. The percent classified correctly is based on all three network output nodes in Fig. 6 having the
proper values, (1 if a texture is present, 0 if it is not). A threshold value of 0.5 was used to decide whether a node
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was outputting a I or a 0. The results associated with the first 100 training epochs in Figs. 7 and 8 correspond to I
what would be produced by a standard MLP classifier of similar topology. However, with a Spline-Net. each time
the connection functions partitions are split by the bifurcation schedule, there is a significant drop in the mean-
squae-amrr of the network This can be clearly seen in Fig. 8 after every 100 training epochs. Once the connection
functions have 16 partitions very little is gained by the additional training using 32 and 64 input partitions. In
contrast. if the standard MLP (0 partition) of the first 100 training epochs was continued unchanged and trained on
the entire data set (700*768 examples), the resulting mean-square-error would be about four times higher than the
Spline-Net results shown in Fig. 8 and the percent classified correctly would be approximately 8% worse. Figure 9
shows the percentage of each texture correctly classified by its corresponding output node. Figures 10 and 11 are
histograms that show how the distribution of values produced by each output node on the texture data set varies as
the number of connection function partitions is increased from 1 to 16 during training. In these figures the output
node values (<I 0 0>, <0 10 >. and <0 0 1>) produced by the 256 training examples corresponding to each texture
are distributed into 100 bins between 0 and 1. The height in a particular bin is directly proportional to the number
of training examples that produced an output value in that quantization interval. The results of Figs. 10 and 11 are
useful when determining optimal threshold values for the output nodes (as opposed to 0.5) that maximize the
number of correctly classified textures.

1I
I
I
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I
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Figure 5. Typical terrain textures found in satellite images.
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Figure 6. Three-Layer Spline-Net with 16 inputs, 8 hidden nodes, and 3 output nodes.
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CONCLUSIONS

It was shown that typical textures found in satellite imagery can be correctly classified by a neural network with I
input produced by preprocessing the image using multi-resolution oriented linear filters for feature extraction. Only
a modest amount of training data, created by hand, was necessary for succesful training. The Spline-Net neural
network architecture was found to be more effective than a standard MLP of similar topology for this application. I
The results indicate that many difficult texture classification problems may be solved faster and more efficiently
using single hidden-layer Spline-Net architectures and a training bifurcation schedule to determine the ideal number of
Spline-Net connection function partitions. 1
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RETRIEVING ATMOSPHERIC TEMPERATURE AND MOISTURE PROFILES
FROM DMSP SOUNDER DATA WITH A NEURAL NETWORK

C.T. Butler and R.v.Z. Meredith'
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ABSTRACT

In recently completed studies, we accurately retrieved atmospheric temperature and moisture vertical profiles from
simulated millimeter-wave sounder data. A similar study using operational data is currently getting underway. In the
simulation studies, backpropagation networks were trained on data that simulated the multichannel output of either the
SSM/T-1 temperature- or SSM/T-2 moisture-sensing radiometers on current Air Force DMSP weather satellites.
Ground-truth information was obtained from a collection of radio- and rocketsonde measurements. Radiometer outputs
were simulated from these data using the Air Force program RADTRAN, and training/testing sets constructed. For
both temperature and moisture, the neural method produces atmospheric profiles from simulated, unfamiliar data that
are comparable to or better than those obtained with current operational methods. Networks, however, were able to
retrieve profiles from the simulated data over a much broader range of geographic areas and seasons than standard
methods, and to do this using less externally supplied geographic or season information. Preliminary results using
operational data will be given if available.

1. INTRODUCTION

The DoD relies on the SSM/T-l and SSM/T-2 passive radiometers (sounders) of its DMSP weather satellites for
vertical profiles of atmospheric temperature and water vapor, respectively. As the satellites pass over Earth's surface,
the sounders continually measure the power received by their several channels. These power measurements are
ultimately reported as effective, or "brightness" temperatures. Because they lie in different portions of atmospheric
absorption bands, the channels each sense the brightness temperature at a different level of the atmosphere. A channel
near the peak of the absorption band measures its parameter (temperature or moisture) at high altitudes, since little
energy can penetrate to the sensor from lower levels; the farther off-peak the channel is, the lower the level of the
atmosphere it samples. Arranged in the proper order, the channels of an instrument thus represent a rough ground-up
profile of its measured parameter.

To obtain vertical temperature or moisture profiles, these brightness temperatures are currently fitted to solutions of
the radiative-transfer equation that physically models the transmission of thermal and other radiation by the
atmophere,2 .

3 or they are related to actual profiles by a piecewise-linear statistical-correlation method that "retrieves"

Research Support Instruments, Inc., Alexandria, VA.
2 Schaerer G., and T.T. Wilheit, " A Passive Microwave Technique for Profiling of Atmospheric Water Vapor,"

Radio Science, 14, pp. 371-375.
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I
a plausible vertical temperature or moisture profile based on a training set composed of similar brightness temperatures 3
and corresponding measured profiles or "ground truth."'

A statistical retrieval method based on a neural network should have two advantages over the one currently used.
First, the natural ability of networks to model nonlinear phenomena should allow them to build a more accurate model
of the highly nonlinear training data. For a given retrieval accuracy, this ability also should allow a network to work
over a broader range of geographic area, terrain types, and seasons than the standard statistical method. Second, the
ability of neural networks to fuse the output of more than one sensor will allow them to simultaneously retrieve several !
atmospheric parameters. This potentially allows more accurate retrieval of each parameter, since information from

all sounder channels is available to the network as it builds its internal model of the training data. II
2. SIMULATION STUDIES

The first of the two simulation studies reported here determined the ability of a neural network to retrieve temperature
vertical profiles of the atmosphere from simulated DMSP SSM/T-1 (T-1) sounder data; the second determined the I
ability of a network to retrieve moisture vertical profiles from simulated SSM/T-2 (T-2) data. Both studies used fully
connected, feed-forward networks and the backpropagation training algorithm. The operational study is briefly
described in Section 3.

2.1. Data Preparation

Simulated brightness temperatures for both studies were generated by applying the program RADTRAN to measured
atmospheric temperature or moisture profiles.s,' RADTRAN uses a physical model of the atmosphere to compute,
for a supplied profile, the brightness temperatures at the top of the atmosphere in selected wavelength bands. The T-l
instrument senses seven bands in the range from approximately 50-60 GHz; the T-2 instrument effectively senses five
bands in the range from 90 to 190 GHz. The measured atmospheric profiles were taken from the so-called Phillips
data, a set of 1600 temperature and humidity profiles assembled and standardized from radio- and rocketsonde
measurements made at continental and maritime weather stations at locations from 30"S to 60"N latitude during two I
short periods in Northern-Hemisphere winter and early summer.7

Details of the data treatment differ between the two studies. In the temperature study, only over-land data were used 3
and southern semitropical data were excluded, which resulted in a training set of 347 and a testing set of 328 examples.
To allow unambiguous interpretation of the retrieval results, the emissivity of Earth was set to a constant value of 0.7
characteristic of land, and zero atmospheric moisture content was assumed. Thus the training and testing sets consisted p
of a mixture of atmospheric-profile/brightness-temperature pairs obtained over land, during both seasons, and from
10"S to 60"N latitude. The long training times experienced with the 20 MHz PC used for this portion of the study
precluded using resampling methods that would have afforded larger training and testing sets. 3

' Kakar, R.K., "Retrieval of Clear Sky Moisture Profiles Using the 183 GHz Water Vapor Line," J. of Climate and I
Applied Meteorology, 23, pp. 1282-1289 (1983).
' Kakar, R.K., and Lambrigtsen, B.H., "A Statistical Correlation Method for Retrieval of Atmospheric Moisture
Profiles by Microwave Radiometry," J. of Climate and Applied Meteorology, 22, pp. 1110-1114 (1984).
' Falcone, V.J., L.W. Abreu, and E.P. Shettle, "Atmospheric Attenuation of Millimeter and Submillimeter Waves:
Models and Computer Code," Air Force Geophysical Laboratory, Hanscomb AFB, MA Report AFGL-TR-79-0253
(1979). I
6 Falcone, V.J., L.W. Abreu, and E.P. Shettle, "Atmospheric Attenuation in the 30-300 GHz Region Using

RADTRAN and MWTRAN," Proceedings of the Society of Photographi and Optical Imstrumentation Engineering, 37,
62 (1982).
' Phillips, N., Suskind, J., and McMillin, L., "Results of Joint NOAA/NASA Sounder Simulation Study," Journal
of Atmospheric and Oceanic Technology, 5, 44 (1988).
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The moisture study was carried out on a Sun SPARCstation 2, and a resampling training/testing method, four-fold
cross-validation, was employed.' For this study, only over-ocean data were used, which led to a 600-member training
set. Surface emissivity was again set to a constant value, this time to 0.4.

For each study, training and testing files were created with input vectors consisting of the five or seven sounder-
channel brightness temperatures and any selection of available geographic and season cues. Latitude, solar zenith
angle, and hour of observation were the only explicit cues available, but terrain-height and ocean/land cues were
implicit in the training/testing data because of the structure of the Phillips data and choices made for each study. For
moisture retrievals using any method, it is necessary to provide the temperature profile corresponding to the 'moisture
data. To keep interpretation of results straight forward, we supplied these.profiles from the Phillips data instead of
co-retrieving them from the brightness temperatures computed for the temperature study. Desired outputs for the
training files were the values of temperature or moisture at selected pressures starting at 1000 mb.

2.2. Network Training and Testing

2.2.1. Temperature. The backpropagation networks were implemented in simulation on a 386/387 PC using the
commercial package ANSim. Four-layer networks were investigated, but were not superior to smaller ones; all results
reported are from networks with a single hidden layer. Uncued networks contained seven and cued networks eight
to ten input neurodes. The output layer consisted of up to 32 neurodes representing the atmospheric temperature at
logarithmically spaced levels from 1000 to 20 mb (ground-level to about 25 km). For cued networks, 24 hidden-layer
neurodes were usually used, while 32 or more were necessary for uncued networks. Despite these large numbers,
no network showed any sign of overfitting the data. The retrieval accuracy of the networks was still improving at 48
hidden-layer neurodes, but training times became unreasonably long at larger values. A decreasing schedule of white
noise was added to the input patterns, and all networks were trained using momentum. Pruning was not available.
For all testing of both temperature and moisture networks, 0.3% white noise was impressed on the network input
vector (the simulated sounder output) to simulate the observed noise level of the actual T-I or T-2 instrument channels.

2.2.2. Moisture. The backpropagation networks for the moisture work were implemented in simulation on a Sun
SPARCstation 2 using the commercial package NeuralWorks Professional II/Plus. As before, all results reported here
are from networks with a single hidden layer. Because of the need to provide temperature profiles, the input layer
of the moisture-retrieval networks contained from 35 to 38 neurodes: five brightness temperatures, 30 temperatures
from 1000 to 200 mb, and up to three cues. Because moisture retrievals are only made up to about 200 mb, the
Phillips data become erratic above about 300 mb, and the vertical resolution of the T-2 instrument does not justify
retrieving moisture concentration at a large number of levels, only the six mandatory levels up to 300 mb were
retrieved. Hidden layers having from five to 24 neurodes were investigated. As is often the case in real-world
applications, the optimum number lay on a broad, shallow maximum; typically, 11 or 16 hidden neurodes were used
for networks trained on data corresponding to a single D-matrix, and 16 or 24 were used for those trained on
combined-latitude-band data. Unlike the earlier study, the faster computer and larger data sets allowed virtually every
network to overfit the data. Networks were saved at frequent intervals during training, and the one for which recall
accuracy, as measured by the average rms output-layer error, was a maximum was chosen for study. As before, white
noise was added to the input patterns at the beginning of training and reduced in steps as training progressed.
Momentum and pruning were needed on some data sets to optimize recall accuracy.

2.3. Results

2.3.1.Temperature. The closest approximation we could devise to the geographic and other parameters used
operationally in so-called D-matrices was to train and test on mixed summer/winter data taken over land within 10"-
or 20"-wide bands ranging from 10" S to 60" N latitude. Because only 67 examples were available for most such

* Weiss, S.H., and C.A. Kulikowski, Computer Systems that Learn, 1991, San Mateo, CA: Morgan Kauffman
Publishers, Inc.
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cases, the retrieval accuracy of networks trained and tested on these subsets were not as good as those obtained I
operationally. When the networks were trained on the entire over-land training set, however, accuracies comparable
to operational ones were obtained. Figure 1 shows retrieval accuracies of cued and uncued networks trained and
tested on simulated brightness temperatures representing mixed summer/winter data taken over land and over the entire I
range of latitudes from 10"S to 60"N. The results are for unfamiliar data; the accuracy measure used is the level-by-
level rms difference between the actual and retrieved temperature profiles. The cued network was supplied with all
three cues: latitude, hour, and solar zenith angle. The uncued network, although not supplied with these parameters,
was implicitly given terrain-height and land/water cues. The retrieval accuracy is very close to that of the cued
network. I
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Figure 1. RMS temperature error of cued (solid) and Figure 2. RMS moisture error of cued networks I
uncued networks trained and tested on all-latitude data. trained and tested on data from individual latitude0 bands. "i

2.3.2 Moisture. Figure 2 shows the retrieval accuracies in relative humidity (RH) for cases approximating a single
D matrix. The symbols SST, T, NST, LM, UM, and SA indicate, respectively, southern semitropical, tropical,
northern semitropical, lower and upper midlatitude, and subarctic. Unless noted, all results in this section represent
averages of four networks trained using the four-fold cross-validation method. Figure 3 shows retrieval accuracies
of cued and uncued networks trained on data from all latitude bands. They are considerably better than the average
accuracy of the networks of Figure 2. As with the temperature retrievals, little or no accuracy is lost if a network
is trained and tested on the above combined data but given no geographic or season cues.

Finally, Figure 4 shows the results when the appropriate subarctic testing set was retrieved a the cued network trained 3
on all-latitude data. Clearly, the retrieval accuracy for unfamiliar data corresponding to this single operational matrix
presented to a network trained on combined data from all geographic zones and seasons (SA, all) is much better than
that obtained from a network trained only on the corresponding single operational-matrix data (SA,SA). The retrieval i
accuracy of another network trained and tested on all-latitude data is shown for comparison.

2.4. DisaIion 3
The retrieval accuracy of the neural method for both simulated T-1 and T-2 data using no explicit input cues and
trained on data from the entire range of seasons and latitudes is comparable to that of operational DMSP temperature-
retrieval methods that use restricted latitude ranges and a number of explicit cues. It is possible that the networks were
able to find subtle differences among the brightness-temperature input patterns for various latitudes and seasons that

I
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allowed them to make accurate models with or without external cues. It is also possible, however, that some of the
simplifications required to evaluate the feasibility of the neural retrieval method without confounding influences largely
removed the dependence of the data on season or geographic location. We will repeat these measurements with
operational T-I data to answer this and other questions. The most striking result of these studies, however, is the
apparent difference between linear and nonlinear methods. Figures I and 3 show that networks trained on a very wide
rnmge of data -- far greater tha that possible with the standard statistical method -- still can retrieve temperature or
moisture profiles with an accuracy at least as good as the traditional statistical method. Moreover, this ability to model
nonlinear data is.at least partially responsible for the effect seen in Figure 4. During training, a network offered a

broad range of data can cross over the artificial boundaries imposed when the data are partitioned into geographic
regions and seasons and build a more robust internal model. The results of the simulation studies suggest the eventual
possibility of retrieving temperature and moisture profiles over a broad range of latitudes, seasons, and terrain without
need of the carefully tuned training data now used in the operational statistical-retrieval method. Even with these
encouraging results, however, much work remains before the technique can be truly compared to operational methods.

3. RETRIEVAL STUIES WITHI OPERATIONAL DATA

The primary goal of the current study is to retrieve vertical temperature profiles from operational T1-1I data. Secondary
goals are to investigate obtaining tropopause and other information normally retrieved by current methods, determine
the appropriate number and type of environmental cues, and investigate the behavior of a neural retrieval system under
various adverse conditions encountered operationally. Unfortunately, the operational T-1 data were only recently
received, and no results are yet available.
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Clustering with the Hopfield Neural Networks
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Washington, DC 20375

Clustering is an important problem in many fields, hence, many techniques have been developed to
solve this problem. In this paper we formulate the unsupervised clustering problem in terms of the
Hopfield model of neural nets and compare the results with those of conventional techniques. This neural
net approach appears to have two advantages over conventional iterative techniques: When there are well
defined clusters it finds good solutions more frequently. When clusters are fuzzy, or when the number of
clusters we specify is not compatible with the structure of the data, the neural net indicates that it cannot
find valid solutions easily, and that something may be wrong.

1 Introduction

In recent years, clustering techniques inspired by neural networks have been added to the repertory.
Kohonen's [6] self-organizing maps have been used to partition the feature space into distinct regions.
In this paper we formulate the clustering problem in terms of the Hopfield model [4] of neural nets and
investigate its performance. The value of neural networks as a computational device is yet to be fully
explored. In fact, little is known about the reliability and complexity of these algorithms, and how they
scale with the size of the problem. The work we present in this paper is an attempt to answer some of these
questions. Hardware implementations of analog neural networks in VLSI are expected to become available
in the next few years [7], until then simulation is going to be an indispensible tool in the study and design
of these systems. Analog networks are intrinsically synchronous and hence well suited for simulation on
massively parallel SIMD machines. By clustering we mean partitioning a set of N patterns (the patterns
are represented as points in a d-dimensional metric feature space) into K clusters in such a way that
those in a given cluster are more similar to each other than the rest. As there are approximately K N

possible ways of partitioning the patterns among K clusters [1], the problem has exponential complexity
and finding the best solution is beyond exhaustive search. Because of the complexity of the problem,
finding the best solution may not be possible. This, however, is not a major concern, because in practice
usually only a good solution is sufficient.

2 Formulation of the Problem

In this paper we use analog neural nets, because they outperform digital nets in solving optimization
problems [4,5]. Many problems of interest, including the problem we address in this paper, can be cast
in terms of an energy function, E, that is quadratic in the neuronal activities and has the form [4]

i=1 ==1 d=.

Here n is the number of neurons in the network, and V¾ (0< Vi _< 1) is the activity or firing rate of neuron
i. The first term in (1) is the interaction energy among neurons. In the second term Ii is the bias
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or activity threshold of neuron i. The third term encourages the network to operate in the interior of I
the n dimensional unit cube {0 < Vi _'< 1} that forms the state space of the system. In this term r
is the self-decay time of the neurons, and g(a), a sigmoid function, is the gain or transfer function of
the neurons that relates the input ui to the output V,. A standard form for g, which we will also use, I
is i = g(u (1 + tanho) = +l. where uo determines the steepness of gain. The neuronal
activities, If,, as well as the input signals, u,, depend on time t. The evolution of the network is determined
by the n coupled ordinary differential equations du/dt = -i9E/01V4, which are

dui Ui n
7 = - + L T, + Ii. (2)

j=1 
I

We will set r = 1, so that time is measured in units of r. To find a solution (i.e. a minimum), we start
the network from a randomly selected state and let it evolve until it reaches a minimum of the function
E and stops. As is usual in dealing with computationally intractable problems, we find not just one but I
several solutions by starting the network from different initial states, and then take the best one as the
solution which may or may not be the optimum. Since a neural network converges rapidly to a minimum
we can afford to run it many times thus ensuring that we find at least a very good solution.

We want to partition a set of N points in a 2-D plane (generalization to arbitrary dimensions is trivial) U
into the best K clusters - best in the sense that sum of the squares of the distances of the points from
their respective cluster centroids (i.e. sum of "within cluster variances") is minimized. We formulate the
problem in a manner that can be solved by a neural network; that is we cast the problem in terms of an I
energy function that can be minimized by the network.

The energy function will consist of two parts: (i) constraint terms which make certain a point, at the
end of the search, belongs to one and only one cluster; (ii) the cost term which is the sum of the residuals
and is the function we actually wish to minimize. To partition N points (patterns) among K clusters, we
need to have n = K x N neurons, i.e. K neurons for each point. We denote each neuron by two letters,
e.g. neuron pi, and let V, stands for its activity. The magnitude of IVp represents the weight with which
point i belongs to cluster p. The energy function, E, can then be expressed as

AN BN K K N
P.Ps(3) 3

i=1 p=i q*p S=1 p=1 p=1 i=1

where the coefficients A, B and C are positive constants. The A-term and the B-term are the constraint
terms, and together they enforce the syntax of the problem. The C-term is the cost term, where Rpi,

the square of the distance of point i from the centroid of cluster p (i.e. the residual), is given by Rpe =

(zT - X) 2+(y, - yP)2. (xi, y,) are the coordinates of point i, and (X, Yp) are the coordinates of the centroid
of cluster p. The centroid of cluster p is obtained from the weighted average XP = P. xV,/ V S
and P.•N EN IV/ - Vpi. Generalizing to higher dimensions is straightforward.

The net'.,ork dynamics, obtained from -OE/810,, are II
dupi K K

d7F "- - A , ,Vqi - B(F_ Vi- )-1 CRpiVp + Ip. (4)
q~p q=1

To find a solution we assign random values between 0 and 1 to all the n = K x N neuronal activities,
Vp, and solve n ordinary differential equations until the activities of all the neurons cease to change.

For simulations we have chosen the following values for the parameters of the energy function: A =
B = 1, C = 0.9/R..., all Ij = 1, and the gain function parameter uO = 0.1. Scaling parameter C with the
average residual R.,,, is necessary to ensure good solutions, because as the network evolves, the residuals
become generally smaller and the cost term becomes less effective in driving the network toward good
solutions; this rescaling of parameter C keeps the cost term of the same order of magnitude as the syntax I
terms. The parameter values are selected by analyzing dynamical stability of valid solutions [5].

1



3 Examples

To study the performance of the neural net we have tested it on some examples. In the first data set,
there are 128 points divided among 5 clusters with within-cluster Gaussian distributions (Fig. la). Here
the 5 clusters are rather well defined and out of the 128 trials the neural net found the optimum clusters

128 times. The average number of iterations for convergence was 4263; since 6t = 10-3r, the average
convergence time is about 4.3r, where r is the decay time of a neuron. In VLSI implementations of neural
networks that are currently in progress [7], the decay time of neurons, r, is in the range 10-6 _ 10-3
second, hence the convergence time of the network should be in the range of a few microseconds to a few
milliseconds.

The conventional method of Forgy [2) in 128 trials found the best clusters only 46 times and various
other solutions 82 times. The average number of iterations for convergence was 7. Clearly, in this example,
the neural net outperforms the conventional method, in that it finds the best solution much more frequently.
On the other hand, the conventional method takes far fewer iterations to converge than the neural net.
But we should bear in mind that these are simulations of the neural net, and that the number of iterations
needed for convergence is not the true measure of the processing time of the network. The convergence
time of an actual analog VLSI network must be measured in r, the characteristic time of a neuron, which
is in the micro- to millisecond range.

To test the performance of the network in cases where the clusters are fuzzy, we started from the data
points of Fig. la, randomly selected 10% of the points and distributed them uniformly throughout the
unit square (Fig. lb). Thus we obtained 5 clusters with uniform background noise. The neural net in 128
trials found the best clusters 28 times. It failed to find valid solutions statisfying the syntax 46 times.
This large number of failed solutions can be interpreted as an indication that the clusters are fuzzy, that
there are outliers, and that perhaps the specified number of clusters, K = 5, is too few. However, even
when the syntax is not satisfied we can extract a valid solution with the following scheme. For each point
i set the largest Vpi to 1 and all the other V4, with q 0 p to 0, and interpret this solution as the one favored
by the network; thus we obtain 128 solutions. Conventional algorithms always find valid solutions and
cannot give an objective indication of the fuzziness of clusters.

Similarly to Fig. 1b, we generated other data sets by increasing the background noise to 25%, 50%,
75%, and 100% (i.e. no clusters). These data are shown in Fig. ic-f. The results of partitioning the data
among five clusters obtained, in 128 trials, with the neural net and with Forgy's method are listed in Table
2. The average estimated convergence times for the network are given in units of r. Two points of note in
this table axe: (i) As the five clusters become less discernible the network increasingly fails to satisfy the
syntax, indicating that the clusters are fuzzy and that five clusters are not sufficient. The conventional
method, on the other hand, always finds valid solutions, and although the variety of solutions that it finds
increases (this is true in both methods), which may be taken as a clue to the fuzziness of the clusters, it is
not as objective an indicator as the failure to satisfy the syntax. (ii) When there are well defined clusters
the neural net performs better than the conventional techniques, which is reflected in the lower average X2

(X2 is the sum of within-cluster variances) for the solutions found by the neural net. And as the clusters
become fuzzier the quality of the solutions found by both methods becomes comparable.

For the data of Fig. If, the centroid trajectories converge to many different points for different trials,
which shows that where there is no underlying structure in the data, the network does not prefer any
particular clustering and hence finds many different solutions.

To test how this neural net algorithm scales with the size of the problem, we generated 32, 64, 128, and
256 data points, distributed among 5 rather well separated clusters. In all the cases the network found
valid solutions in all of its trials, and the best solution in nearly all of its trials; consistently performing
better than Forgy's algorithm. Thus, it appears that for clustering the Hopfield network scales well.

In another example we used a standard clustering data set, namely Anderson's 4-dimensional iris data
which is composed of three well separated clusters. As was the case with the example of Fig. la, the neutral
net approach found the best solution in all of its 100 trials, whereas the conventional technique found the
best solution in 78% of its trials.
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Table 1: In this table the results obtained by Forgy's conventional algorithm are compared with those
obtained by the neural network. These are based on 128 trials.

Data Conventional I
Iter Best Var Best% AvgVar

a 7 0.62 36 1.23
b 8 1.06 34 1.57
c 8 1.95 12 2.27
d 10 2.94 2 3.14
e 10 3.88 10 4.11
f 10 4.46 2 4.64

Data 0.62Neural Net_____
Time Best Var Best% Avg Var Synt%

a 4 0.62 100 0.62 100
b 7 1.06 22 1.24 64
c 7 1.95 19 2.03 9
d 8 3.00 15 3.04 0 3
e 6 3.89 1 4.11 1
f 8 4.46 2 4.71 0

Data: refers to the data points of Figs. la-f. 1
Iter: is the average number of iterations for convergence.
Best Var: is the variance of the best solution found.
Best%: is the percentage of trials that found the best solution.
Avg Var: is the average variance of the solutions found.
Time: is the average estimated time of convergence in units of r.
Synt%: is the percentage of trials that found solutions satisfying the syntax.
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